Suppr超能文献

用于多重成像数据空间分析的扩展相关函数。

Extended correlation functions for spatial analysis of multiplex imaging data.

作者信息

Bull Joshua A, Mulholland Eoghan J, Leedham Simon J, Byrne Helen M

机构信息

Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK.

Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK.

出版信息

Biol Imaging. 2024 Feb 15;4:e2. doi: 10.1017/S2633903X24000011. eCollection 2024.

Abstract

Imaging platforms for generating highly multiplexed histological images are being continually developed and improved. Significant improvements have also been made in the accuracy of methods for automated cell segmentation and classification. However, less attention has focused on the quantification and analysis of the resulting point clouds, which describe the spatial coordinates of individual cells. We focus here on a particular spatial statistical method, the cross-pair correlation function (cross-PCF), which can identify positive and negative spatial correlation between cells across a range of length scales. However, limitations of the cross-PCF hinder its widespread application to multiplexed histology. For example, it can only consider relations between pairs of cells, and cells must be classified using discrete categorical labels (rather than labeling continuous labels such as stain intensity). In this paper, we present three extensions to the cross-PCF which address these limitations and permit more detailed analysis of multiplex images: topographical correlation maps can visualize local clustering and exclusion between cells; neighbourhood correlation functions can identify colocalization of two or more cell types; and weighted-PCFs describe spatial correlation between points with continuous (rather than discrete) labels. We apply the extended PCFs to synthetic and biological datasets in order to demonstrate the insight that they can generate.

摘要

用于生成高度多重组织学图像的成像平台正在不断开发和改进。自动细胞分割和分类方法的准确性也有了显著提高。然而,对于描述单个细胞空间坐标的所得点云的量化和分析关注较少。我们在此关注一种特定的空间统计方法,交叉对相关函数(cross-PCF),它可以识别一系列长度尺度上细胞之间的正空间相关性和负空间相关性。然而,交叉对相关函数的局限性阻碍了它在多重组织学中的广泛应用。例如,它只能考虑细胞对之间的关系,并且细胞必须使用离散的分类标签进行分类(而不是标记连续标签,如染色强度)。在本文中,我们提出了对交叉对相关函数的三种扩展,以解决这些局限性,并允许对多重图像进行更详细的分析:地形相关图可以可视化细胞之间的局部聚集和排斥;邻域相关函数可以识别两种或更多细胞类型的共定位;加权对相关函数描述具有连续(而非离散)标签点之间的空间相关性。我们将扩展后的对相关函数应用于合成数据集和生物数据集,以证明它们能够产生的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ecd8/10951806/9f4b28e15445/S2633903X24000011_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验