Suppr超能文献

通过 EEG 微状态监测缺血性中风的后遗症。

Monitoring the after-effects of ischemic stroke through EEG microstates.

机构信息

West China Biomedical Big Data Center of West China Hospital, Sichuan University, Chengdu, China.

College of Information and Computer, Taiyuan University of Technology, Taiyuan, China.

出版信息

PLoS One. 2024 Mar 22;19(3):e0300806. doi: 10.1371/journal.pone.0300806. eCollection 2024.

Abstract

BACKGROUND AND PURPOSE

Stroke may cause extensive after-effects such as motor function impairments and disorder of consciousness (DoC). Detecting these after-effects of stroke and monitoring their changes are challenging jobs currently undertaken via traditional clinical examinations. These behavioural examinations often take a great deal of manpower and time, thus consuming significant resources. Computer-aided examinations of the electroencephalogram (EEG) microstates derived from bedside EEG monitoring may provide an alternative way to assist medical practitioners in a quick assessment of the after-effects of stroke.

METHODS

In this study, we designed a framework to extract microstate maps and calculate their statistical parameters to input to classifiers to identify DoC in ischemic stroke patients automatically. As the dataset is imbalanced with the minority of patients being DoC, an ensemble of support vector machines (EOSVM) is designed to solve the problem that classifiers always tend to be the majority classes in the classification on an imbalanced dataset.

RESULTS

The experimental results show EOSVM get better performance (with accuracy and F1-Score both higher than 89%), improving sensitivity the most, from lower than 60% (SVM and AdaBoost) to higher than 80%. This highlighted the usefulness of the EOSVM-aided DoC detection based on microstates parameters.

CONCLUSION

Therefore, the classifier EOSVM classification based on features of EEG microstates is helpful to medical practitioners in DoC detection with saved resources that would otherwise be consumed in traditional clinic checks.

摘要

背景与目的

中风可能导致广泛的后遗症,如运动功能障碍和意识障碍(DoC)。目前,通过传统的临床检查来检测这些中风后的影响并监测其变化是一项具有挑战性的工作。这些行为检查通常需要大量的人力和时间,因此消耗了大量的资源。从床边脑电图(EEG)监测中提取微状态的计算机辅助 EEG 检查,可能为帮助医生快速评估中风后的影响提供一种替代方法。

方法

在这项研究中,我们设计了一个框架,从床边 EEG 监测中提取微状态图并计算其统计参数,将其输入到分类器中,以自动识别缺血性中风患者的 DoC。由于数据集存在不平衡问题,少数患者存在 DoC,因此设计了一个支持向量机集成(EOSVM)来解决分类器在不平衡数据集上的分类中总是倾向于多数类别的问题。

结果

实验结果表明,EOSVM 具有更好的性能(准确性和 F1-Score 均高于 89%),提高了敏感性,从低于 60%(SVM 和 AdaBoost)提高到高于 80%。这突出了基于微状态参数的 EOSVM 辅助 DoC 检测的有用性。

结论

因此,基于 EEG 微状态特征的分类器 EOSVM 分类有助于医生在 DoC 检测中节省资源,这些资源在传统的临床检查中会被消耗掉。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7366/10959352/b9e65b5f3a23/pone.0300806.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验