Wickert Kerstin, Roland Michael, Andres Annchristin, Diebels Stefan, Ganse Bergita, Kerner Dorothea, Frenzel Felix, Tschernig Thomas, Ernst Manuela, Windolf Markus, Müller Max, Pohlemann Tim, Orth Marcel
Applied Mechanics, Saarland University, Saarbrücken, Germany.
Werner Siemens Endowed Chair of Innovative Implant Development (Fracture Healing), Saarland University, Homburg, Germany.
Front Bioeng Biotechnol. 2024 Mar 8;12:1370837. doi: 10.3389/fbioe.2024.1370837. eCollection 2024.
The management of fractured bones is a key domain within orthopedic trauma surgery, with the prevention of delayed healing and non-unions forming a core challenge. This study evaluates the efficacy of the AO Fracture Monitor in conjunction with biomechanical simulations to better understand the local mechanics of fracture gaps, which is crucial for comprehending mechanotransduction, a key factor in bone healing. Through a series of experiments and corresponding simulations, the study tests four hypotheses to determine the relationship between physical measurements and the predictive power of biomechanical models. Employing the AO Fracture Monitor and Digital Image Correlation techniques, the study demonstrates a significant correlation between the surface strain of implants and interfragmentary movements. This provides a foundation for utilizing one-dimensional AO Fracture Monitor measurements to predict three-dimensional fracture behavior, thereby linking mechanical loading with fracture gap dynamics. Moreover, the research establishes that finite element simulations of bone-implant systems can be effectively validated using experimental data, underpinning the accuracy of simulations in replicating physical behaviors. The findings endorse the combined use of monitoring technologies and simulations to infer the local mechanical conditions at the fracture site, offering a potential leap in personalized therapy for bone healing. Clinically, this approach can enhance treatment outcomes by refining the assessment precision in trauma trials, fostering the early detection of healing disturbances, and guiding improvements in future implant design. Ultimately, this study paves the way for more sophisticated patient monitoring and tailored interventions, promising to elevate the standard of care in orthopedic trauma surgery.
骨折的处理是骨科创伤手术中的一个关键领域,预防延迟愈合和骨不连是一项核心挑战。本研究评估了AO骨折监测仪结合生物力学模拟的效果,以更好地了解骨折间隙的局部力学情况,这对于理解机械转导(骨愈合的一个关键因素)至关重要。通过一系列实验和相应模拟,该研究检验了四个假设,以确定物理测量与生物力学模型预测能力之间的关系。利用AO骨折监测仪和数字图像相关技术,该研究证明了植入物表面应变与骨折块间运动之间存在显著相关性。这为利用一维AO骨折监测仪测量结果预测三维骨折行为奠定了基础,从而将机械负荷与骨折间隙动态联系起来。此外,该研究证实,使用实验数据可以有效验证骨植入系统的有限元模拟,这支持了模拟在复制物理行为方面的准确性。研究结果支持联合使用监测技术和模拟来推断骨折部位的局部力学状况,为骨愈合的个性化治疗带来了潜在飞跃。在临床上,这种方法可以通过提高创伤试验中的评估精度、促进对愈合障碍的早期检测以及指导未来植入物设计的改进来提高治疗效果。最终,本研究为更复杂的患者监测和量身定制的干预措施铺平了道路,有望提高骨科创伤手术的护理标准。