Department of Advanced Nanomedical Engineering, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.
Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion, Kawasaki, Japan.
RNA Biol. 2024 Jan;21(1):1-27. doi: 10.1080/15476286.2024.2333123. Epub 2024 Mar 26.
Adjuvanticity and delivery are crucial facets of mRNA vaccine design. In modern mRNA vaccines, adjuvant functions are integrated into mRNA vaccine nanoparticles, allowing the co-delivery of antigen mRNA and adjuvants in a unified, all-in-one formulation. In this formulation, many mRNA vaccines utilize the immunostimulating properties of mRNA and vaccine carrier components, including lipids and polymers, as adjuvants. However, careful design is necessary, as excessive adjuvanticity and activation of improper innate immune signalling can conversely hinder vaccination efficacy and trigger adverse effects. mRNA vaccines also require delivery systems to achieve antigen expression in antigen-presenting cells (APCs) within lymphoid organs. Some vaccines directly target APCs in the lymphoid organs, while others rely on APCs migration to the draining lymph nodes after taking up mRNA vaccines. This review explores the current mechanistic understanding of these processes and the ongoing efforts to improve vaccine safety and efficacy based on this understanding.
佐剂和传递是 mRNA 疫苗设计的关键方面。在现代 mRNA 疫苗中,佐剂功能被整合到 mRNA 疫苗纳米颗粒中,允许抗原 mRNA 和佐剂在统一的、一体化的配方中共同传递。在这种配方中,许多 mRNA 疫苗利用 mRNA 和疫苗载体成分(包括脂质和聚合物)的免疫刺激特性作为佐剂。然而,需要精心设计,因为过多的佐剂和不适当的先天免疫信号的激活反而会阻碍疫苗的疗效并引发不良反应。mRNA 疫苗还需要递送系统来实现在淋巴器官中的抗原呈递细胞 (APC) 中表达抗原。一些疫苗直接靶向淋巴器官中的 APC,而另一些疫苗则依赖于 APC 在摄取 mRNA 疫苗后迁移到引流淋巴结。这篇综述探讨了这些过程的当前机制理解,以及基于这种理解正在努力提高疫苗的安全性和疗效。