Suppr超能文献

一种用于分析连续时间认知过程的深度学习方法。

A Deep Learning Approach to Analyzing Continuous-Time Cognitive Processes.

作者信息

Shain Cory, Schuler William

机构信息

Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.

Department of Linguistics, The Ohio State University, Columbus, OH, USA.

出版信息

Open Mind (Camb). 2024 Mar 13;8:235-264. doi: 10.1162/opmi_a_00126. eCollection 2024.

Abstract

The dynamics of the mind are complex. Mental processes unfold continuously in time and may be sensitive to a myriad of interacting variables, especially in naturalistic settings. But statistical models used to analyze data from cognitive experiments often assume simplistic dynamics. Recent advances in deep learning have yielded startling improvements to simulations of dynamical cognitive processes, including speech comprehension, visual perception, and goal-directed behavior. But due to poor interpretability, deep learning is generally not used for scientific analysis. Here, we bridge this gap by showing that deep learning can be used, not just to imitate, but to complex processes, providing flexible function approximation while preserving interpretability. To do so, we define and implement a nonlinear regression model in which the probability distribution over the response variable is parameterized by convolving the history of predictors over time using an artificial neural network, thereby allowing the shape and continuous temporal extent of effects to be inferred directly from time series data. Our approach relaxes standard simplifying assumptions (e.g., linearity, stationarity, and homoscedasticity) that are implausible for many cognitive processes and may critically affect the interpretation of data. We demonstrate substantial improvements on behavioral and neuroimaging data from the language processing domain, and we show that our model enables discovery of novel patterns in exploratory analyses, controls for diverse confounds in confirmatory analyses, and opens up research questions in cognitive (neuro)science that are otherwise hard to study.

摘要

心理动力学是复杂的。心理过程在时间上持续展开,并且可能对无数相互作用的变量敏感,尤其是在自然主义环境中。但是用于分析认知实验数据的统计模型通常假设动力学过于简单。深度学习的最新进展在动态认知过程的模拟方面取得了惊人的改进,包括言语理解、视觉感知和目标导向行为。但由于可解释性较差,深度学习一般不用于科学分析。在这里,我们弥合了这一差距,表明深度学习不仅可以用于模仿,还可以用于 复杂过程,在保持可解释性的同时提供灵活的函数逼近。为此,我们定义并实现了一个非线性回归模型,其中响应变量上的概率分布通过使用人工神经网络对预测变量随时间的历史进行卷积来参数化,从而允许直接从时间序列数据中推断效应的形状和连续时间范围。我们的方法放宽了许多认知过程中不合理且可能严重影响数据解释的标准简化假设(例如线性、平稳性和同方差性)。我们在语言处理领域的行为和神经成像数据上展示了实质性的改进,并且我们表明我们的模型能够在探索性分析中发现新模式,在验证性分析中控制各种混杂因素,并在认知(神经)科学中提出原本难以研究的研究问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f429/10962694/7afecdba90ce/opmi-08-235-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验