State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China.
ACS Synth Biol. 2024 Apr 19;13(4):1303-1311. doi: 10.1021/acssynbio.4c00028. Epub 2024 Mar 26.
In this study, we proposed a biological approach to efficiently produce pseudouridine (Ψ) from glucose and uracil in vivo using engineered . By screening host strains and core enzymes, MG1655 overexpressing Ψ monophosphate (ΨMP) glycosidase and ΨMP phosphatase was obtained, which displayed the highest Ψ concentration. Then, optimization of the RBS sequences, enhancement of ribose 5-phosphate supply in the cells, and overexpression of the membrane transport protein UraA were investigated. Finally, fed-batch fermentation of Ψ in a 5 L fermentor can reach 27.5 g/L with a yield of 89.2 mol % toward uracil and 25.6 mol % toward glucose within 48 h, both of which are the highest to date. In addition, the Ψ product with a high purity of 99.8% can be purified from the fermentation broth after crystallization. This work provides an efficient and environmentally friendly protocol for allowing for the possibility of Ψ bioproduction on an industrial scale.
在本研究中,我们提出了一种生物方法,利用工程菌,从葡萄糖和尿嘧啶体内高效生产假尿嘧啶核苷(Ψ)。通过筛选宿主菌株和核心酶,获得了过表达Ψ单磷酸(ΨMP)糖苷酶和ΨMP 磷酸酶的 MG1655,其显示出最高的 Ψ 浓度。然后,我们研究了 RBS 序列的优化、细胞内核糖 5-磷酸供应的增强以及膜转运蛋白 UraA 的过表达。最后,在 5 L 发酵罐中进行分批补料发酵,48 小时内可达到 27.5 g/L 的 Ψ 产量,对尿嘧啶的得率为 89.2 mol%,对葡萄糖的得率为 25.6 mol%,均达到目前的最高水平。此外,Ψ 产物经结晶后可从发酵液中纯化得到纯度高达 99.8%的产物。这项工作为在工业规模上实现 Ψ 的生物生产提供了一种高效、环保的方案。