Suppr超能文献

前生物聚合物的生长和序列分化的折叠体假说。

Foldamer hypothesis for the growth and sequence differentiation of prebiotic polymers.

机构信息

Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794.

Department of Chemistry, Stony Brook University, Stony Brook, NY 11794.

出版信息

Proc Natl Acad Sci U S A. 2017 Sep 5;114(36):E7460-E7468. doi: 10.1073/pnas.1620179114. Epub 2017 Aug 22.

Abstract

It is not known how life originated. It is thought that prebiotic processes were able to synthesize short random polymers. However, then, how do short-chain molecules spontaneously grow longer? Also, how would random chains grow more informational and become autocatalytic (i.e., increasing their own concentrations)? We study the folding and binding of random sequences of hydrophobic ([Formula: see text]) and polar ([Formula: see text]) monomers in a computational model. We find that even short hydrophobic polar () chains can collapse into relatively compact structures, exposing hydrophobic surfaces. In this way, they act as primitive versions of today's protein catalysts, elongating other such HP polymers as ribosomes would now do. Such foldamer catalysts are shown to form an autocatalytic set, through which short chains grow into longer chains that have particular sequences. An attractive feature of this model is that it does not overconverge to a single solution; it gives ensembles that could further evolve under selection. This mechanism describes how specific sequences and conformations could contribute to the chemistry-to-biology (CTB) transition.

摘要

生命是如何起源的尚不清楚。人们认为前生物过程能够合成短的随机聚合物。然而,那么,短链分子如何自发地变长呢?此外,随机链如何变得更具信息性并成为自我催化的(即增加自身浓度)?我们在计算模型中研究了疏水([Formula: see text])和极性([Formula: see text])单体的随机序列的折叠和结合。我们发现,即使是短的疏水-极性(HP)链也可以折叠成相对紧凑的结构,暴露出疏水面。通过这种方式,它们充当了当今蛋白质催化剂的原始版本,就像核糖体现在所做的那样,延伸其他 HP 聚合物。事实证明,这种折叠体催化剂形成了一个自我催化集,通过该集,短链可以生长成具有特定序列的更长链。该模型的一个吸引人的特点是它不会过度收敛到单个解决方案;它提供了可以在选择下进一步进化的集合。该机制描述了特定序列和构象如何有助于化学到生物学(CTB)的转变。

相似文献

1
Foldamer hypothesis for the growth and sequence differentiation of prebiotic polymers.
Proc Natl Acad Sci U S A. 2017 Sep 5;114(36):E7460-E7468. doi: 10.1073/pnas.1620179114. Epub 2017 Aug 22.
2
Prebiotic selection for motifs in a model of template-free elongation of polymers within compartments.
PLoS One. 2017 Jul 19;12(7):e0180208. doi: 10.1371/journal.pone.0180208. eCollection 2017.
3
Generic folding and transition hierarchies for surface adsorption of hydrophobic-polar lattice model proteins.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Jan;87(1):012706. doi: 10.1103/PhysRevE.87.012706. Epub 2013 Jan 11.
4
Autocatalytic replication and homochirality in biopolymers: is homochirality a requirement of life or a result of it?
Astrobiology. 2012 Sep;12(9):818-29. doi: 10.1089/ast.2012.0819. Epub 2012 Aug 29.
5
A general polymer model of unfolded proteins under folding conditions.
J Phys Chem B. 2010 Dec 9;114(48):15969-75. doi: 10.1021/jp104746g. Epub 2010 Nov 15.
6
The Bootstrap Model of Prebiotic Networks of Proteins and Nucleic Acids.
Life (Basel). 2022 May 12;12(5):724. doi: 10.3390/life12050724.
8
Polymer collapse, protein folding, and the percolation threshold.
J Comput Chem. 2002 Jan 15;23(1):166-71. doi: 10.1002/jcc.1163.
9
Onset of natural selection in populations of autocatalytic heteropolymers.
J Chem Phys. 2018 Oct 7;149(13):134901. doi: 10.1063/1.5048488.
10
The origin and spread of a cooperative replicase in a prebiotic chemical system.
J Theor Biol. 2015 Jan 7;364:249-59. doi: 10.1016/j.jtbi.2014.09.019. Epub 2014 Sep 22.

引用本文的文献

1
In silico evolution of globular protein folds from random sequences.
Proc Natl Acad Sci U S A. 2025 Jul 8;122(27):e2509015122. doi: 10.1073/pnas.2509015122. Epub 2025 Jun 30.
3
Prime mass amino acids: A new numbers based classification of significance to mass spectrometry and protein biology.
Eur J Mass Spectrom (Chichester). 2025 Jun;31(3-4):73-78. doi: 10.1177/14690667251339718. Epub 2025 May 15.
4
On the role of α-alumina in the origin of life: Surface-driven assembly of amino acids.
Sci Adv. 2025 Apr 11;11(15):eadt4151. doi: 10.1126/sciadv.adt4151.
5
Insights into conformational ensembles of compositionally identical disordered peptidomimetics.
Polym Chem. 2024 Aug 7;15(29):2970-2980. doi: 10.1039/D4PY00341A. Epub 2024 Jul 4.
7
Origins of Life: The Protein Folding Problem all over again?
Proc Natl Acad Sci U S A. 2024 Aug 20;121(34):e2315000121. doi: 10.1073/pnas.2315000121. Epub 2024 Aug 12.
8
The prebiotic emergence of biological evolution.
R Soc Open Sci. 2024 Jul 24;11(7):240431. doi: 10.1098/rsos.240431. eCollection 2024 Jul.
9
Mapping Composition Evolution through Synthesis, Purification, and Depolymerization of Random Heteropolymers.
J Am Chem Soc. 2024 Mar 6;146(9):6178-6188. doi: 10.1021/jacs.3c13909. Epub 2024 Feb 22.
10
Origins of life: first came evolutionary dynamics.
QRB Discov. 2023 Mar 22;4:e4. doi: 10.1017/qrd.2023.2. eCollection 2023.

本文引用的文献

1
Are protein-protein interfaces special regions on a protein's surface?
J Chem Phys. 2015 Dec 28;143(24):243149. doi: 10.1063/1.4937428.
2
De Novo Proteins with Life-Sustaining Functions Are Structurally Dynamic.
J Mol Biol. 2016 Jan 29;428(2 Pt A):399-411. doi: 10.1016/j.jmb.2015.12.008. Epub 2015 Dec 18.
3
Fast, cheap and out of control--Insights into thermodynamic and informatic constraints on natural protein sequences from de novo protein design.
Biochim Biophys Acta. 2016 May;1857(5):485-492. doi: 10.1016/j.bbabio.2015.10.002. Epub 2015 Oct 20.
4
Site-Selective Reactions with Peptide-Based Catalysts.
Top Curr Chem. 2016;372:157-201. doi: 10.1007/128_2015_653.
5
Ester-Mediated Amide Bond Formation Driven by Wet-Dry Cycles: A Possible Path to Polypeptides on the Prebiotic Earth.
Angew Chem Int Ed Engl. 2015 Aug 17;54(34):9871-5. doi: 10.1002/anie.201503792. Epub 2015 Jul 15.
6
Primordial evolvability: Impasses and challenges.
J Theor Biol. 2015 Sep 21;381:29-38. doi: 10.1016/j.jtbi.2015.06.047. Epub 2015 Jul 9.
7
Biophysics of protein evolution and evolutionary protein biophysics.
J R Soc Interface. 2014 Nov 6;11(100):20140419. doi: 10.1098/rsif.2014.0419.
8
Peptide catalysis in aqueous emulsions.
Chem Commun (Camb). 2014 Aug 4;50(60):8109-12. doi: 10.1039/c4cc01759e.
9
Highly efficient self-replicating RNA enzymes.
Chem Biol. 2014 Feb 20;21(2):238-45. doi: 10.1016/j.chembiol.2013.12.004. Epub 2014 Jan 2.
10
Design of protein catalysts.
Annu Rev Biochem. 2013;82:447-70. doi: 10.1146/annurev-biochem-072611-101825.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验