Suppr超能文献

使用深度学习对骶髂关节MRI上的脂肪化生进行自动分割

Automatic segmentation of fat metaplasia on sacroiliac joint MRI using deep learning.

作者信息

Li Xin, Lin Yi, Xie Zhuoyao, Lu Zixiao, Song Liwen, Ye Qiang, Wang Menghong, Fang Xiao, He Yi, Chen Hao, Zhao Yinghua

机构信息

Department of Radiology, The Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics, Guangdong Province), Guangzhou, 510630, Guangdong, China.

Department of Computer Science and Engineering, The Hong Kong University of Science and Technology, Hong Kong, 999077, China.

出版信息

Insights Imaging. 2024 Mar 26;15(1):93. doi: 10.1186/s13244-024-01659-y.

Abstract

OBJECTIVE

To develop a deep learning (DL) model for segmenting fat metaplasia (FM) on sacroiliac joint (SIJ) MRI and further develop a DL model for classifying axial spondyloarthritis (axSpA) and non-axSpA.

MATERIALS AND METHODS

This study retrospectively collected 706 patients with FM who underwent SIJ MRI from center 1 (462 axSpA and 186 non-axSpA) and center 2 (37 axSpA and 21 non-axSpA). Patients from center 1 were divided into the training, validation, and internal test sets (n = 455, 64, and 129). Patients from center 2 were used as the external test set. We developed a UNet-based model to segment FM. Based on segmentation results, a classification model was built to distinguish axSpA and non-axSpA. Dice Similarity Coefficients (DSC) and area under the curve (AUC) were used for model evaluation. Radiologists' performance without and with model assistance was compared to assess the clinical utility of the models.

RESULTS

Our segmentation model achieved satisfactory DSC of 81.86% ± 1.55% and 85.44% ± 6.09% on the internal cross-validation and external test sets. The classification model yielded AUCs of 0.876 (95% CI: 0.811-0.942) and 0.799 (95% CI: 0.696-0.902) on the internal and external test sets, respectively. With model assistance, segmentation performance was improved for the radiological resident (DSC, 75.70% vs. 82.87%, p < 0.05) and expert radiologist (DSC, 85.03% vs. 85.74%, p > 0.05).

CONCLUSIONS

DL is a novel method for automatic and accurate segmentation of FM on SIJ MRI and can effectively increase radiologist's performance, which might assist in improving diagnosis and progression of axSpA.

CRITICAL RELEVANCE STATEMENT

DL models allowed automatic and accurate segmentation of FM on sacroiliac joint MRI, which might facilitate quantitative analysis of FM and have the potential to improve diagnosis and prognosis of axSpA.

KEY POINTS

• Deep learning was used for automatic segmentation of fat metaplasia on MRI. • UNet-based models achieved automatic and accurate segmentation of fat metaplasia. • Automatic segmentation facilitates quantitative analysis of fat metaplasia to improve diagnosis and prognosis of axial spondyloarthritis.

摘要

目的

开发一种深度学习(DL)模型,用于在骶髂关节(SIJ)MRI上分割脂肪化生(FM),并进一步开发一种DL模型用于对轴性脊柱关节炎(axSpA)和非轴性脊柱关节炎(non-axSpA)进行分类。

材料与方法

本研究回顾性收集了来自中心1(462例axSpA和186例non-axSpA)和中心2(37例axSpA和21例non-axSpA)的706例接受SIJ MRI检查的FM患者。来自中心1的患者被分为训练集、验证集和内部测试集(n = 455、64和129)。来自中心2的患者用作外部测试集。我们开发了一种基于UNet的模型来分割FM。基于分割结果,建立了一个分类模型以区分axSpA和non-axSpA。使用骰子相似系数(DSC)和曲线下面积(AUC)进行模型评估。比较了无模型辅助和有模型辅助时放射科医生的表现,以评估模型的临床实用性。

结果

我们的分割模型在内部交叉验证集和外部测试集上分别取得了令人满意的DSC,分别为81.86%±1.55%和85.44%±6.09%。分类模型在内部和外部测试集上的AUC分别为0.876(95%CI:0.811 - 0.942)和0.799(95%CI:0.696 - 0.902)。在模型辅助下,放射科住院医师的分割性能得到改善(DSC,75.70%对82.87%,p < 0.05),专家放射科医生的分割性能也得到改善(DSC,85.03%对85.74%,p > 0.05)。

结论

DL是一种在SIJ MRI上自动、准确分割FM的新方法,可有效提高放射科医生的工作表现,这可能有助于改善axSpA的诊断和病情进展。

关键相关性声明

DL模型能够在骶髂关节MRI上自动、准确地分割FM,这可能有助于对FM进行定量分析,并有可能改善axSpA的诊断和预后。

要点

• 深度学习用于MRI上脂肪化生的自动分割。• 基于UNet的模型实现了脂肪化生的自动、准确分割。• 自动分割有助于对脂肪化生进行定量分析,以改善轴性脊柱关节炎的诊断和预后。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d71/10965870/b10b0da67237/13244_2024_1659_Fig1_HTML.jpg

相似文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验