Suppr超能文献

脑龄预测:深度模型需要助力以实现泛化。

Brain Age Prediction: Deep Models Need a Hand to Generalize.

作者信息

Rajabli Reza, Soltaninejad Mahdie, Fonov Vladimir S, Bzdok Danilo, Collins D Louis

机构信息

McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada.

Mila-Quebec Artificial Intelligence Institute, Montreal, Canada.

出版信息

Hum Brain Mapp. 2025 Aug 1;46(11):e70254. doi: 10.1002/hbm.70254.

Abstract

Predicting brain age from T1-weighted MRI is a promising marker for understanding brain aging and its associated conditions. While deep learning models have shown success in reducing the mean absolute error (MAE) of predicted brain age, concerns about robust and accurate generalization in new data limit their clinical applicability. The large number of trainable parameters, combined with limited medical imaging training data, contributes to this challenge, often resulting in a generalization gap where there is a significant discrepancy between model performance on training data versus unseen data. In this study, we assess a deep model, SFCN-reg, based on the VGG-16 architecture, and address the generalization gap through comprehensive preprocessing, extensive data augmentation, and model regularization. Using training data from the UK Biobank, we demonstrate substantial improvements in model performance. Specifically, our approach reduces the generalization MAE by 47% (from 5.25 to 2.79 years) in the Alzheimer's Disease Neuroimaging Initiative dataset and by 12% (from 4.35 to 3.75 years) in the Australian Imaging, Biomarker and Lifestyle dataset. Furthermore, we achieve up to 13% reduction in scan-rescan error (from 0.80 to 0.70 years) while enhancing the model's robustness to registration errors. Feature importance maps highlight anatomical regions used to predict age. These results highlight the critical role of high-quality preprocessing and robust training techniques in improving accuracy and narrowing the generalization gap, both necessary steps toward the clinical use of brain age prediction models. Our study makes valuable contributions to neuroimaging research by offering a potential pathway to improve the clinical applicability of deep learning models.

摘要

从T1加权磁共振成像预测脑龄是理解脑老化及其相关病症的一个有前景的指标。虽然深度学习模型已成功降低了预测脑龄的平均绝对误差(MAE),但对新数据中稳健且准确的泛化能力的担忧限制了它们的临床适用性。大量可训练参数,再加上有限的医学影像训练数据,导致了这一挑战,常常造成泛化差距,即训练数据与未见数据上的模型性能存在显著差异。在本研究中,我们评估了基于VGG - 16架构的深度模型SFCN - reg,并通过全面预处理、广泛的数据增强和模型正则化来解决泛化差距。使用来自英国生物银行的训练数据,我们展示了模型性能的显著提升。具体而言,我们的方法在阿尔茨海默病神经影像倡议数据集中将泛化MAE降低了47%(从5.25年降至2.79年),在澳大利亚影像、生物标志物和生活方式数据集中降低了12%(从4.35年降至3.75年)。此外,我们在将扫描 - 重扫误差降低多达13%(从0.80年降至0.70年)的同时,增强了模型对配准误差的鲁棒性。特征重要性图突出了用于预测年龄的解剖区域。这些结果凸显了高质量预处理和稳健训练技术在提高准确性和缩小泛化差距方面所起的关键作用,这两者都是脑龄预测模型临床应用的必要步骤。我们的研究通过提供一条改善深度学习模型临床适用性的潜在途径,为神经影像研究做出了有价值的贡献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7e6/12265028/92ba2d10e6e1/HBM-46-e70254-g004.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验