Suppr超能文献

三种公开可用模型在多发性硬化症中脑年龄估计的可重复性和再现性。

Repeatability and reproducibility of brain age estimates in multiple sclerosis for three publicly available models.

作者信息

Bos Lonneke, van Nederpelt David R, Cole J H, Strijbis E M M, Moraal B, Kuijer J P A, Uitdehaag B M J, Barkhof F, Wink A M, Vrenken H, Jasperse B

机构信息

MS Center Amsterdam, Radiology and Nuclear Medicine, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, Amsterdam, the Netherlands.

UCL London, Institutes of Neurology and Healthcare Engineering, London, United Kingdom.

出版信息

Neuroimage Rep. 2025 Mar 21;5(2):100252. doi: 10.1016/j.ynirp.2025.100252. eCollection 2025 Jun.

Abstract

Accelerated brain aging is a marker of disease-related neurodegeneration in multiple sclerosis (MS). Artificial intelligence models, trained on healthy individuals, can estimate age from brain MRI scans, but the effects of technical variations between MR scanners and conditions on these estimates are currently insufficiently investigated. This study aims to determine the within-scanner repeatability and between-scanner reproducibility of the brain-predicted age difference (brain-PAD) across three brain age models. 30 people with multiple sclerosis and 10 healthy controls (mean age 44.2 ± 11.7 years and 39.2 ± 12.9 years, respectively), underwent six scans in a single day; a scan and immediate on a 3 T GE, 1.5 T Siemens and a 3 T Siemens MRI-scanner. Brain-PAD was determined using brainageR, DeepBrainNet and the MIDI-model from 3D T1w brain MRI-scans. Intraclass correlation coefficient (ICC) was used to quantify absolute agreement within-scanner (ICC-AA) and between-scanner consistency (ICC-C). Variance component analyses were used to determine the standard error of measurement (SEM) and the smallest detectable change (SDC). Brain-PAD was higher for pwMS compared to HC when predicted with brainageR and DeepBrainNet, not when predicted with the MIDI-model. Within-scanner repeatability was excellent (ICC-AA>0.93) for all models. Between-scanner reproducibility was good to excellent (ICC-C>0.85) for brainageR and the MIDI-model, while DeepBrainNet, showed excellent between-scanner reproducibility for Sola vs. VIDA (ICC-C:0.97), but moderate for GE vs. Sola and for GE vs. Vida (ICC-C:0.63 and 0.61). Between-scanner SDC was 6.56 years for brainageR, 5.57 years for the MIDI-model and 22.65 years for DeepBrainNet. Our findings demonstrated high repeatability of brain age estimates from the same scanner, but variable reproducibility across different scanners, irrespective of the brain age prediction model.

摘要

脑加速老化是多发性硬化症(MS)中与疾病相关的神经退行性变的一个标志。基于健康个体训练的人工智能模型可以通过脑部MRI扫描估计年龄,但目前对MR扫描仪和扫描条件之间的技术差异对这些估计的影响研究不足。本研究旨在确定三种脑年龄模型中脑预测年龄差(brain-PAD)在扫描仪内的重复性和扫描仪间的再现性。30例多发性硬化症患者和10名健康对照者(平均年龄分别为44.2±11.7岁和39.2±12.9岁)在一天内接受了六次扫描;分别在3T GE、1.5T西门子和3T西门子MRI扫描仪上进行一次扫描并立即重复扫描。使用brainageR、DeepBrainNet和来自3D T1w脑部MRI扫描的MIDI模型确定脑PAD。组内相关系数(ICC)用于量化扫描仪内的绝对一致性(ICC-AA)和扫描仪间的一致性(ICC-C)。方差成分分析用于确定测量标准误差(SEM)和最小可检测变化(SDC)。当用brainageR和DeepBrainNet预测时,多发性硬化症患者的脑PAD高于健康对照者,而用MIDI模型预测时则不然。所有模型的扫描仪内重复性都非常好(ICC-AA>0.93)。对于brainageR和MIDI模型,扫描仪间再现性良好至非常好(ICC-C>0.85),而DeepBrainNet在Sola与VIDA之间显示出非常好的扫描仪间再现性(ICC-C:0.97),但在GE与Sola之间以及GE与Vida之间为中等(ICC-C:0.63和0.61)。对于brainageR,扫描仪间的SDC为6.56岁,对于MIDI模型为5.57岁,对于DeepBrainNet为22.65岁。我们的研究结果表明,同一扫描仪对脑年龄的估计具有很高的重复性,但不同扫描仪之间的再现性存在差异,与脑年龄预测模型无关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d23d/12172926/598c67329229/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验