Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States.
Chemical and Biological Signature Sciences, Pacific Northwest National Laboratory, Richland, Washington 99354, United States.
J Am Soc Mass Spectrom. 2024 May 1;35(5):912-921. doi: 10.1021/jasms.3c00453. Epub 2024 Mar 27.
Structure-based drug design, which relies on precise understanding of the target protein and its interaction with the drug candidate, is dramatically expedited by advances in computational methods for candidate prediction. Yet, the accuracy needs to be improved with more structural data from high throughput experiments, which are challenging to generate, especially for dynamic and weak associations. Herein, we applied native mass spectrometry (native MS) to rapidly characterize ligand binding of an allosteric heterodimeric complex of SARS-CoV-2 nonstructural proteins (nsp) nsp10 and nsp16 (nsp10/16), a complex essential for virus survival in the host and thus a desirable drug target. Native MS showed that the dimer is in equilibrium with monomeric states in solution. Consistent with the literature, well characterized small cosubstrate, RNA substrate, and product bind with high specificity and affinity to the dimer but not the free monomers. Unsuccessfully designed ligands bind indiscriminately to all forms. Using neutral gas collision, the nsp16 monomer with bound cosubstrate can be released from the holo dimer complex, confirming the binding to nsp16 as revealed by the crystal structure. However, we observed an unusual migration of the endogenous zinc ions bound to nsp10 to nsp16 after collisional dissociation. The metal migration can be suppressed by using surface collision with reduced precursor charge states, which presumably resulted in minimal gas-phase structural rearrangement and highlighted the importance of complementary techniques. With minimal sample input (∼μg), native MS can rapidly detect ligand binding affinities and locations in dynamic multisubunit protein complexes, demonstrating the potential of an "all-in-one" native MS assay for rapid structural profiling of protein-to-AI-based compound systems to expedite drug discovery.
基于结构的药物设计依赖于对靶蛋白及其与候选药物相互作用的精确理解,而候选预测的计算方法的进步极大地加速了这一过程。然而,需要更多来自高通量实验的结构数据来提高准确性,而这些数据的生成具有挑战性,特别是对于动态和弱相互作用。在此,我们应用天然质谱(native MS)快速表征 SARS-CoV-2 非结构蛋白(nsp)nsp10 和 nsp16(nsp10/16)的变构异二聚体复合物的配体结合,该复合物是病毒在宿主中生存所必需的,因此是一个理想的药物靶标。天然 MS 表明二聚体在溶液中与单体平衡。与文献一致,特征良好的小分子辅助底物、RNA 底物和产物与二聚体具有高特异性和亲和力结合,但不与游离单体结合。设计不当的配体无差别地结合所有形式。使用中性气体碰撞,可以将结合辅助底物的 nsp16 单体从全同二聚体复合物中释放出来,从而确认与 nsp16 的结合,这与晶体结构所揭示的一致。然而,我们观察到结合到 nsp10 的内源性锌离子在碰撞解离后异常迁移到 nsp16。通过使用表面碰撞和减少前体电荷状态,可以抑制金属迁移,这可能导致最小的气相结构重排,并突出互补技术的重要性。使用最小的样品输入(约μg),天然 MS 可以快速检测动态多亚基蛋白质复合物中配体的结合亲和力和位置,表明“一体化”天然 MS 测定法在快速结构分析中的潜力基于蛋白质的化合物系统,以加速药物发现。