Suppr超能文献

射血分数保留的心力衰竭患者死亡率和发病率的预后模型

Prognostic Models for Mortality and Morbidity in Heart Failure With Preserved Ejection Fraction.

作者信息

McDowell Kirsty, Kondo Toru, Talebi Atefeh, Teh Ken, Bachus Erasmus, de Boer Rudolf A, Campbell Ross T, Claggett Brian, Desai Ashkay S, Docherty Kieran F, Hernandez Adrian F, Inzucchi Silvio E, Kosiborod Mikhail N, Lam Carolyn S P, Martinez Felipe, Simpson Joanne, Vaduganathan Muthiah, Jhund Pardeep S, Solomon Scott D, McMurray John J V

机构信息

British Heart Foundation Cardiovascular Research Centre, University of Glasgow, Glasgow, United Kingdom.

Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan.

出版信息

JAMA Cardiol. 2024 May 1;9(5):457-465. doi: 10.1001/jamacardio.2024.0284.

Abstract

IMPORTANCE

Accurate risk prediction of morbidity and mortality in patients with heart failure with preserved ejection fraction (HFpEF) may help clinicians risk stratify and inform care decisions.

OBJECTIVE

To develop and validate a novel prediction model for clinical outcomes in patients with HFpEF using routinely collected variables and to compare it with a biomarker-driven approach.

DESIGN, SETTING, AND PARTICIPANTS: Data were used from the Dapagliflozin Evaluation to Improve the Lives of Patients With Preserved Ejection Fraction Heart Failure (DELIVER) trial to derive the prediction model, and data from the Angiotensin Receptor Neprilysin Inhibition in Heart Failure With Preserved Ejection Fraction (PARAGON-HF) and the Irbesartan in Heart Failure With Preserved Ejection Fraction Study (I-PRESERVE) trials were used to validate it. The outcomes were the composite of HF hospitalization (HFH) or cardiovascular death, cardiovascular death, and all-cause death. A total of 30 baseline candidate variables were selected in a stepwise fashion using multivariable analyses to create the models. Data were analyzed from January 2023 to June 2023.

EXPOSURES

Models to estimate the 1-year and 2-year risk of cardiovascular death or hospitalization for heart failure, cardiovascular death, and all-cause death.

RESULTS

Data from 6263 individuals in the DELIVER trial were used to derive the prediction model and data from 4796 individuals in the PARAGON-HF trial and 4128 individuals in the I-PRESERVE trial were used to validate it. The final prediction model for the composite outcome included 11 variables: N-terminal pro-brain natriuretic peptide (NT-proBNP) level, HFH within the past 6 months, creatinine level, diabetes, geographic region, HF duration, treatment with a sodium-glucose cotransporter 2 inhibitor, chronic obstructive pulmonary disease, transient ischemic attack/stroke, any previous HFH, and heart rate. This model showed good discrimination (C statistic at 1 year, 0.73; 95% CI, 0.71-0.75) in both validation cohorts (C statistic at 1 year, 0.71; 95% CI, 0.69-0.74 in PARAGON-HF and 0.75; 95% CI, 0.73-0.78 in I-PRESERVE) and calibration. The model showed similar discrimination to a biomarker-driven model including high-sensitivity cardiac troponin T and significantly better discrimination than the Meta-Analysis Global Group in Chronic (MAGGIC) risk score (C statistic at 1 year, 0.60; 95% CI, 0.58-0.63; delta C statistic, 0.13; 95% CI, 0.10-0.15; P < .001) and NT-proBNP level alone (C statistic at 1 year, 0.66; 95% CI, 0.64-0.68; delta C statistic, 0.07; 95% CI, 0.05-0.08; P < .001). Models derived for the prediction of all-cause and cardiovascular death also performed well. An online calculator was created to allow calculation of an individual's risk.

CONCLUSIONS AND RELEVANCE

In this prognostic study, a robust prediction model for clinical outcomes in HFpEF was developed and validated using routinely collected variables. The model performed better than NT-proBNP level alone. The model may help clinicians to identify high-risk patients and guide treatment decisions in HFpEF.

摘要

重要性

准确预测射血分数保留的心力衰竭(HFpEF)患者的发病和死亡风险,可能有助于临床医生进行风险分层并为护理决策提供依据。

目的

使用常规收集的变量,开发并验证一种用于HFpEF患者临床结局的新型预测模型,并将其与基于生物标志物的方法进行比较。

设计、设置和参与者:使用达格列净评估改善射血分数保留的心力衰竭患者生活(DELIVER)试验的数据来推导预测模型,并使用射血分数保留的心力衰竭中血管紧张素受体脑啡肽酶抑制剂(PARAGON-HF)试验和射血分数保留的心力衰竭研究(I-PRESERVE)试验的数据对其进行验证。结局指标为心力衰竭住院(HFH)或心血管死亡、心血管死亡和全因死亡的复合终点。使用多变量分析逐步选择30个基线候选变量来创建模型。数据分析时间为2023年1月至2023年6月。

暴露因素

用于估计心血管死亡或心力衰竭住院、心血管死亡和全因死亡的1年和2年风险的模型。

结果

DELIVER试验中6263名个体的数据用于推导预测模型,PARAGON-HF试验中4796名个体和I-PRESERVE试验中4128名个体的数据用于验证该模型。复合结局的最终预测模型包括11个变量:N末端脑钠肽前体(NT-proBNP)水平、过去6个月内的HFH、肌酐水平、糖尿病、地理区域、HF病程、使用钠-葡萄糖协同转运蛋白2抑制剂治疗、慢性阻塞性肺疾病、短暂性脑缺血发作/中风、既往任何HFH以及心率。该模型在两个验证队列中均显示出良好的区分度(1年时的C统计量为0.73;95%CI,0.71-0.75)(PARAGON-HF中1年时的C统计量为0.71;95%CI,0.69-0.74,I-PRESERVE中为0.75;95%CI,0.73-0.78)以及校准度。该模型与包括高敏心肌肌钙蛋白T在内的基于生物标志物的模型显示出相似的区分度,并且比慢性心力衰竭荟萃分析全球组(MAGGIC)风险评分(1年时的C统计量为0.60;95%CI,0.58-0.63;C统计量差值为0.13;95%CI,0.10-0.15;P<0.001)和单独的NT-proBNP水平(1年时的C统计量为0.66;95%CI,0.64-0.68;C统计量差值为0.07;95%CI,0.05-0.08;P<0.001)具有显著更好的区分度。用于预测全因死亡和心血管死亡的模型也表现良好。创建了一个在线计算器,用于计算个体风险。

结论与意义

在这项预后研究中,使用常规收集的变量开发并验证了一种用于HFpEF临床结局的强大预测模型。该模型的表现优于单独的NT-proBNP水平。该模型可能有助于临床医生识别HFpEF中的高危患者并指导治疗决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4647/10974691/599b90cd33eb/jamacardiol-e240284-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验