Suppr超能文献

基于高斯鹰优化器的双卷积神经网络的膝关节图像用于骨关节炎的识别和分级。

Gaussian Aquila optimizer based dual convolutional neural networks for identification and grading of osteoarthritis using knee joint images.

机构信息

Department of Biomedical Engineering, PSNA College of Engineering and Technology, Dindigul, India.

Department of Biomedical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, India.

出版信息

Sci Rep. 2024 Mar 27;14(1):7225. doi: 10.1038/s41598-024-57002-4.

Abstract

Degenerative musculoskeletal disease known as Osteoarthritis (OA) causes serious pain and abnormalities for humans and on detecting at an early stage, timely treatment shall be initiated to the patients at the earliest to overcome this pain. In this research study, X-ray images are captured from the humans and the proposed Gaussian Aquila Optimizer based Dual Convolutional Neural Networks is employed for detecting and classifying the osteoarthritis patients. The new Gaussian Aquila Optimizer (GAO) is devised to include Gaussian mutation at the exploitation stage of Aquila optimizer, which results in attaining the best global optimal value. Novel Dual Convolutional Neural Network (DCNN) is devised to balance the convolutional layers in each convolutional model and the weight and bias parameters of the new DCNN model are optimized using the developed GAO. The novelty of the proposed work lies in evolving a new optimizer, Gaussian Aquila Optimizer for parameter optimization of the devised DCNN model and the new DCNN model is structured to minimize the computational burden incurred in spite of it possessing dual layers but with minimal number of layers. The knee dataset comprises of total 2283 knee images, out of which 1267 are normal knee images and 1016 are the osteoarthritis images with an image of 512 × 512-pixel width and height respectively. The proposed novel GAO-DCNN system attains the classification results of 98.25% of sensitivity, 98.93% of specificity and 98.77% of classification accuracy for abnormal knee case-knee joint images. Experimental simulation results carried out confirms the superiority of the developed hybrid GAO-DCNN over the existing deep learning neural models form previous literature studies.

摘要

退行性肌肉骨骼疾病,称为骨关节炎(OA),会给人类带来严重的疼痛和异常。在早期发现时,应尽早为患者启动及时治疗,以克服这种疼痛。在这项研究中,从人类身上拍摄 X 光图像,并使用基于高斯鹰优化器的双卷积神经网络(GAO-DCNN)来检测和分类骨关节炎患者。新的高斯鹰优化器(GAO)被设计为在鹰优化器的开发阶段包含高斯突变,这导致获得最佳全局最优值。新的双卷积神经网络(DCNN)被设计为平衡每个卷积模型中的卷积层,并且新的 DCNN 模型的权重和偏差参数使用开发的 GAO 进行优化。所提出工作的新颖之处在于开发了一种新的优化器,即高斯鹰优化器,用于优化所设计的 DCNN 模型的参数,并且新的 DCNN 模型被构造为最小化尽管具有两层但具有最小数量的层的计算负担。膝关节数据集包含总共 2283 张膝关节图像,其中 1267 张是正常膝关节图像,1016 张是骨关节炎图像,图像宽度和高度均为 512×512 像素。所提出的新颖的 GAO-DCNN 系统针对异常膝关节病例-膝关节图像,获得了 98.25%的灵敏度、98.93%的特异性和 98.77%的分类准确性的分类结果。进行的实验模拟结果证实了所开发的混合 GAO-DCNN 优于先前文献研究中的现有深度学习神经网络模型的优越性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/22dd/11349978/8515395ed773/41598_2024_57002_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验