De Simone Matteo, Iaconetta Giorgio, Palermo Giuseppina, Fiorindi Alessandro, Schaller Karl, De Maria Lucio
Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Via S. Allende, 84081 Baronissi, Italy.
Neurosurgery Unit, University Hospital "San Giovanni di Dio e Ruggi, D'Aragona", 84131 Salerno, Italy.
Brain Sci. 2024 Mar 20;14(3):296. doi: 10.3390/brainsci14030296.
In this paper, we discuss how the clustering analysis technique can be applied to analyze functional magnetic resonance imaging (fMRI) time-series data in the context of glioblastoma (GBM), a highly heterogeneous brain tumor. The precise characterization of GBM is challenging and requires advanced analytical approaches. We have synthesized the existing literature to provide an overview of how clustering algorithms can help identify unique patterns within the dynamics of GBM. Our review shows that the clustering of fMRI time series has great potential for improving the differentiation between various subtypes of GBM, which is pivotal for developing personalized therapeutic strategies. Moreover, this method proves to be effective in capturing temporal changes occurring in GBM, enhancing the monitoring of disease progression and response to treatment. By thoroughly examining and consolidating the current research, this paper contributes to the understanding of how clustering techniques applied to fMRI data can refine the characterization of GBM. This article emphasizes the importance of incorporating cutting-edge data analysis techniques into neuroimaging and neuro-oncology research. By providing a detailed perspective, this approach may guide future investigations and boost the development of tailored therapeutic strategies for GBM.
在本文中,我们讨论了如何将聚类分析技术应用于分析胶质母细胞瘤(GBM)(一种高度异质性的脑肿瘤)背景下的功能磁共振成像(fMRI)时间序列数据。GBM的精确表征具有挑战性,需要先进的分析方法。我们综合了现有文献,以概述聚类算法如何有助于识别GBM动态中的独特模式。我们的综述表明,fMRI时间序列的聚类在改善GBM各种亚型之间的区分方面具有巨大潜力,这对于制定个性化治疗策略至关重要。此外,该方法被证明在捕捉GBM中发生的时间变化方面是有效的,增强了对疾病进展和治疗反应的监测。通过全面审查和整合当前研究,本文有助于理解应用于fMRI数据的聚类技术如何完善GBM的表征。本文强调了将前沿数据分析技术纳入神经影像学和神经肿瘤学研究的重要性。通过提供详细的观点,这种方法可能会指导未来的研究,并推动针对GBM的定制治疗策略的发展。