Suppr超能文献

胶质母细胞瘤特征中的功能磁共振成像时间序列聚类:演变、应用及潜力综述

Clustering Functional Magnetic Resonance Imaging Time Series in Glioblastoma Characterization: A Review of the Evolution, Applications, and Potentials.

作者信息

De Simone Matteo, Iaconetta Giorgio, Palermo Giuseppina, Fiorindi Alessandro, Schaller Karl, De Maria Lucio

机构信息

Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Via S. Allende, 84081 Baronissi, Italy.

Neurosurgery Unit, University Hospital "San Giovanni di Dio e Ruggi, D'Aragona", 84131 Salerno, Italy.

出版信息

Brain Sci. 2024 Mar 20;14(3):296. doi: 10.3390/brainsci14030296.

Abstract

In this paper, we discuss how the clustering analysis technique can be applied to analyze functional magnetic resonance imaging (fMRI) time-series data in the context of glioblastoma (GBM), a highly heterogeneous brain tumor. The precise characterization of GBM is challenging and requires advanced analytical approaches. We have synthesized the existing literature to provide an overview of how clustering algorithms can help identify unique patterns within the dynamics of GBM. Our review shows that the clustering of fMRI time series has great potential for improving the differentiation between various subtypes of GBM, which is pivotal for developing personalized therapeutic strategies. Moreover, this method proves to be effective in capturing temporal changes occurring in GBM, enhancing the monitoring of disease progression and response to treatment. By thoroughly examining and consolidating the current research, this paper contributes to the understanding of how clustering techniques applied to fMRI data can refine the characterization of GBM. This article emphasizes the importance of incorporating cutting-edge data analysis techniques into neuroimaging and neuro-oncology research. By providing a detailed perspective, this approach may guide future investigations and boost the development of tailored therapeutic strategies for GBM.

摘要

在本文中,我们讨论了如何将聚类分析技术应用于分析胶质母细胞瘤(GBM)(一种高度异质性的脑肿瘤)背景下的功能磁共振成像(fMRI)时间序列数据。GBM的精确表征具有挑战性,需要先进的分析方法。我们综合了现有文献,以概述聚类算法如何有助于识别GBM动态中的独特模式。我们的综述表明,fMRI时间序列的聚类在改善GBM各种亚型之间的区分方面具有巨大潜力,这对于制定个性化治疗策略至关重要。此外,该方法被证明在捕捉GBM中发生的时间变化方面是有效的,增强了对疾病进展和治疗反应的监测。通过全面审查和整合当前研究,本文有助于理解应用于fMRI数据的聚类技术如何完善GBM的表征。本文强调了将前沿数据分析技术纳入神经影像学和神经肿瘤学研究的重要性。通过提供详细的观点,这种方法可能会指导未来的研究,并推动针对GBM的定制治疗策略的发展。

相似文献

引用本文的文献

4
The Complexity of Malignant Glioma Treatment.恶性胶质瘤治疗的复杂性
Cancers (Basel). 2025 Mar 4;17(5):879. doi: 10.3390/cancers17050879.

本文引用的文献

2
Progress in cancer neuroscience.癌症神经科学的进展
MedComm (2020). 2023 Nov 22;4(6):e431. doi: 10.1002/mco2.431. eCollection 2023 Dec.
4
J-score: a robust measure of clustering accuracy.J分数:聚类准确性的一种稳健度量。
PeerJ Comput Sci. 2023 Sep 4;9:e1545. doi: 10.7717/peerj-cs.1545. eCollection 2023.
10
Application of Clustering-Based Analysis in MRI Brain Tissue Segmentation.基于聚类分析的 MRI 脑组织分割应用。
Comput Math Methods Med. 2022 Aug 3;2022:7401184. doi: 10.1155/2022/7401184. eCollection 2022.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验