Xu Siyi, Liu Wenwen, Wu Chengpei, Li Junli
School of Computer Science, Sichuan Normal University, Chengdu 610068, China.
Visual Computing and Virtual Reality Key Laboratory of Sichuan, Sichuan Normal University, Chengdu 610068, China.
Entropy (Basel). 2024 Mar 14;26(3):262. doi: 10.3390/e26030262.
The No Free Lunch Theorem tells us that no algorithm can beat other algorithms on all types of problems. The algorithm selection structure is proposed to select the most suitable algorithm from a set of algorithms for an unknown optimization problem. This paper introduces an innovative algorithm selection approach called the CNN-HT, which is a two-stage algorithm selection framework. In the first stage, a Convolutional Neural Network (CNN) is employed to classify problems. In the second stage, the Hypothesis Testing (HT) technique is used to suggest the best-performing algorithm based on the statistical analysis of the performance metric of algorithms that address various problem categories. The two-stage approach can adapt to different algorithm combinations without the need to retrain the entire model, and modifications can be made in the second stage only, which is an improvement of one-stage approaches. To provide a more general structure for the classification model, we adopt Exploratory Landscape Analysis (ELA) features of the problem as input and utilize feature selection techniques to reduce the redundant ones. In problem classification, the average accuracy of classifying problems using CNN is 96%, which demonstrates the advantages of CNN compared to Random Forest and Support Vector Machines. After feature selection, the accuracy increases to 98.8%, further improving the classification performance while reducing the computational cost. This demonstrates the effectiveness of the first stage of the CNN-HT method, which provides a basis for algorithm selection. In the experiments, CNN-HT shows the advantages of the second stage algorithm as well as good performance with better average rankings in different algorithm combinations compared to the individual algorithms and another algorithm combination approach.
无免费午餐定理告诉我们,没有一种算法能在所有类型的问题上击败其他算法。提出了算法选择结构,以便从一组算法中为未知的优化问题选择最合适的算法。本文介绍了一种创新的算法选择方法,称为CNN-HT,它是一个两阶段的算法选择框架。在第一阶段,使用卷积神经网络(CNN)对问题进行分类。在第二阶段,使用假设检验(HT)技术,基于对解决各种问题类别的算法性能指标的统计分析,推荐性能最佳的算法。这种两阶段方法可以适应不同的算法组合,而无需重新训练整个模型,并且只需在第二阶段进行修改,这是对单阶段方法的一种改进。为了给分类模型提供更通用的结构,我们采用问题的探索性景观分析(ELA)特征作为输入,并利用特征选择技术减少冗余特征。在问题分类中,使用CNN对问题进行分类的平均准确率为96%,这证明了CNN相对于随机森林和支持向量机的优势。经过特征选择后,准确率提高到98.8%,在降低计算成本的同时进一步提高了分类性能。这证明了CNN-HT方法第一阶段的有效性,为算法选择提供了依据。在实验中,CNN-HT展示了第二阶段算法的优势,并且与单个算法和另一种算法组合方法相比,在不同算法组合中具有更好的平均排名和良好的性能。