Suppr超能文献

通过本地计算面部分析增强 VarFish 中的变体优先级。

Enhancing Variant Prioritization in VarFish through On-Premise Computational Facial Analysis.

机构信息

Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany.

Core Unit for Bioinformatics Data Analysis, Medical Faculty, University of Bonn, 53127 Bonn, Germany.

出版信息

Genes (Basel). 2024 Mar 17;15(3):370. doi: 10.3390/genes15030370.

Abstract

Genomic variant prioritization is crucial for identifying disease-associated genetic variations. Integrating facial and clinical feature analyses into this process enhances performance. This study demonstrates the integration of facial analysis (GestaltMatcher) and Human Phenotype Ontology analysis (CADA) within VarFish, an open-source variant analysis framework. Challenges related to non-open-source components were addressed by providing an open-source version of GestaltMatcher, facilitating on-premise facial analysis to address data privacy concerns. Performance evaluation on 163 patients recruited from a German multi-center study of rare diseases showed PEDIA's superior accuracy in variant prioritization compared to individual scores. This study highlights the importance of further benchmarking and future integration of advanced facial analysis approaches aligned with ACMG guidelines to enhance variant classification.

摘要

基因组变异优先级排序对于鉴定与疾病相关的遗传变异至关重要。将面部和临床特征分析整合到这个过程中可以提高性能。本研究展示了在 VarFish 中整合面部分析(GestaltMatcher)和人类表型本体分析(CADA),VarFish 是一个开源的变异分析框架。通过提供 GestaltMatcher 的开源版本,解决了非开源组件相关的挑战,促进了现场的面部分析,以解决数据隐私问题。对来自德国罕见病多中心研究的 163 名患者进行的性能评估表明,与个体评分相比,PEDIA 在变异优先级排序方面具有更高的准确性。本研究强调了进一步基准测试和未来与 ACMG 指南一致的先进面部分析方法的整合的重要性,以增强变异分类。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/96f7/10969976/fcb8555958b0/genes-15-00370-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验