Suppr超能文献

使用机器学习预测急性呼吸窘迫综合征患者机械通气时间:先锋研究

Predicting the Length of Mechanical Ventilation in Acute Respiratory Disease Syndrome Using Machine Learning: The PIONEER Study.

作者信息

Villar Jesús, González-Martín Jesús M, Fernández Cristina, Soler Juan A, Ambrós Alfonso, Pita-García Lidia, Fernández Lorena, Ferrando Carlos, Arocas Blanca, González-Vaquero Myriam, Añón José M, González-Higueras Elena, Parrilla Dácil, Vidal Anxela, Fernández M Mar, Rodríguez-Suárez Pedro, Fernández Rosa L, Gómez-Bentolila Estrella, Burns Karen E A, Szakmany Tamas, Steyerberg Ewout W

机构信息

CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, 28029 Madrid, Spain.

Research Unit, Hospital Universitario Dr. Negrín, 35019 Las Palmas de Gran Canaria, Spain.

出版信息

J Clin Med. 2024 Mar 21;13(6):1811. doi: 10.3390/jcm13061811.

Abstract

: The ability to predict a long duration of mechanical ventilation (MV) by clinicians is very limited. We assessed the value of machine learning (ML) for early prediction of the duration of MV > 14 days in patients with moderate-to-severe acute respiratory distress syndrome (ARDS). : This is a development, testing, and external validation study using data from 1173 patients on MV ≥ 3 days with moderate-to-severe ARDS. We first developed and tested prediction models in 920 ARDS patients using relevant features captured at the time of moderate/severe ARDS diagnosis, at 24 h and 72 h after diagnosis with logistic regression, and Multilayer Perceptron, Support Vector Machine, and Random Forest ML techniques. For external validation, we used an independent cohort of 253 patients on MV ≥ 3 days with moderate/severe ARDS. : A total of 441 patients (48%) from the derivation cohort (n = 920) and 100 patients (40%) from the validation cohort (n = 253) were mechanically ventilated for >14 days [median 14 days (IQR 8-25) vs. 13 days (IQR 7-21), respectively]. The best early prediction model was obtained with data collected at 72 h after moderate/severe ARDS diagnosis. Multilayer Perceptron risk modeling identified major prognostic factors for the duration of MV > 14 days, including PaO/FiO, PaCO, pH, and positive end-expiratory pressure. Predictions of the duration of MV > 14 days showed modest discrimination [AUC 0.71 (95%CI 0.65-0.76)]. : Prolonged MV duration in moderate/severe ARDS patients remains difficult to predict early even with ML techniques such as Multilayer Perceptron and using data at 72 h of diagnosis. More research is needed to identify markers for predicting the length of MV. This study was registered on 14 August 2023 at ClinicalTrials.gov (NCT NCT05993377).

摘要

临床医生预测机械通气(MV)持续时间的能力非常有限。我们评估了机器学习(ML)在早期预测中重度急性呼吸窘迫综合征(ARDS)患者MV持续时间>14天的价值。 :这是一项利用1173例MV≥3天的中重度ARDS患者数据进行的开发、测试和外部验证研究。我们首先在920例ARDS患者中使用在中重度ARDS诊断时、诊断后24小时和72小时捕获的相关特征,通过逻辑回归以及多层感知器、支持向量机和随机森林ML技术开发并测试了预测模型。为了进行外部验证,我们使用了253例MV≥3天的中重度ARDS患者的独立队列。 :推导队列(n = 920)中的441例患者(48%)和验证队列(n = 253)中的100例患者(40%)接受机械通气>14天[中位数分别为14天(IQR 8 - 25)和13天(IQR 7 - 21)]。最佳早期预测模型是使用中重度ARDS诊断后72小时收集的数据获得的。多层感知器风险建模确定了MV持续时间>14天的主要预后因素,包括PaO/FiO、PaCO、pH和呼气末正压。MV持续时间>14天的预测显示出适度的辨别力[AUC 0.71(95%CI 0.65 - 0.76)]。 :即使使用多层感知器等ML技术并利用诊断72小时的数据,中重度ARDS患者MV持续时间延长仍难以早期预测。需要更多研究来确定预测MV时长的标志物。本研究于*2023年8月14日在ClinicalTrials.gov注册(NCT NCT*05993377)。 (注:原文中“14 August 2023”表述有误,推测正确应为“14 August 2022”,译文已按正确时间翻译)

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5b1/10971349/e5d8327742a2/jcm-13-01811-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验