Suppr超能文献

根据初始医疗因素预测 ICU 创伤患者的机械通气延长:一种机器学习方法。

Prediction prolonged mechanical ventilation in trauma patients of the intensive care unit according to initial medical factors: a machine learning approach.

机构信息

Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran.

Trauma Research Center, Shahid Rajaee (Emtiaz) Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran.

出版信息

Sci Rep. 2023 Apr 12;13(1):5925. doi: 10.1038/s41598-023-33159-2.

Abstract

The goal of this study was to develop a predictive machine learning model to predict the risk of prolonged mechanical ventilation (PMV) in patients admitted to the intensive care unit (ICU), with a focus on laboratory and Arterial Blood Gas (ABG) data. This retrospective cohort study included ICU patients admitted to Rajaei Hospital in Shiraz between 2016 and March 20, 2022. All adult patients requiring mechanical ventilation and seeking ICU admission had their data analyzed. Six models were created in this study using five machine learning models (PMV more than 3, 5, 7, 10, 14, and 23 days). Patients' demographic characteristics, Apache II, laboratory information, ABG, and comorbidity were predictors. This study used Logistic regression (LR), artificial neural networks (ANN), support vector machines (SVM), random forest (RF), and C.5 decision tree (C.5 DT) to predict PMV. The study enrolled 1138 eligible patients, excluding brain-dead patients and those without mechanical ventilation or a tracheostomy. The model PMV > 14 days showed the best performance (Accuracy: 83.63-98.54). The essential ABG variables in our two optimal models (artificial neural network and decision tree) in the PMV > 14 models include FiO, paCO, and paO. This study provides evidence that machine learning methods outperform traditional methods and offer a perspective for achieving a consensus definition of PMV. It also introduces ABG and laboratory information as the two most important variables for predicting PMV. Therefore, there is significant value in deploying such models in clinical practice and making them accessible to clinicians to support their decision-making.

摘要

本研究旨在开发一种预测性机器学习模型,以预测入住重症监护病房(ICU)患者发生机械通气延长(PMV)的风险,重点关注实验室和动脉血气(ABG)数据。这项回顾性队列研究纳入了 2016 年至 2022 年 3 月 20 日期间入住设拉子拉贾伊医院的 ICU 患者。所有需要机械通气并寻求 ICU 入院的成年患者均对其数据进行了分析。本研究使用了五种机器学习模型(PMV 超过 3、5、7、10、14 和 23 天)创建了六个模型。患者的人口统计学特征、Apache II、实验室信息、ABG 和合并症均作为预测因素。本研究使用 Logistic 回归(LR)、人工神经网络(ANN)、支持向量机(SVM)、随机森林(RF)和 C.5 决策树(C.5 DT)来预测 PMV。该研究纳入了 1138 名符合条件的患者,排除了脑死亡患者以及那些没有机械通气或气管切开术的患者。PMV>14 天的模型表现最佳(准确率:83.63-98.54)。在 PMV>14 天的两个最优模型(人工神经网络和决策树)中,ABG 的基本变量包括 FiO、paCO 和 paO。本研究提供了证据表明,机器学习方法优于传统方法,并为实现 PMV 的共识定义提供了新视角。它还介绍了 ABG 和实验室信息作为预测 PMV 的两个最重要的变量。因此,在临床实践中部署此类模型并使其可供临床医生使用以支持其决策具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0db7/10097728/1dec896c3276/41598_2023_33159_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验