Suppr超能文献

用于未来信息处理的复杂化学反应网络。

Complex chemical reaction networks for future information processing.

作者信息

Csizi Katja-Sophia, Lörtscher Emanuel

机构信息

Department of Science of Quantum and Information Technology, IBM Research Europe - Zurich, Rüschlikon, Switzerland.

出版信息

Front Neurosci. 2024 Mar 13;18:1379205. doi: 10.3389/fnins.2024.1379205. eCollection 2024.

Abstract

Tackling the increasing energy demand of our society is one of the key challenges today. With the rise of artificial intelligence, information and communication technologies started to substantially contribute to this alarming trend and therefore necessitate more sustainable approaches for the future. Brain-inspired computing paradigms represent a radically new and potentially more energy-efficient approach for computing that may complement or even replace CMOS in the long term. In this perspective, we elaborate on the concepts and properties of complex chemical reaction networks (CRNs) that may serve as information-processing units based on chemical reactions. The computational capabilities of simpler, oscillatory chemical reactions have already been demonstrated in scenarios ranging from the emulation of Boolean gates to image-processing tasks. CRNs offer higher complexity and larger non-linearity, potentially at lower energy consumption. Key challenges for the successful development of CRN-based computers are associated with their specific physical implementations, operability, and readout modalities. CRNs are sensible to various reaction triggers, and provide multiple and interlinked reaction pathways and a diverse compound space. This bears a high potential to build radically new hardware and software concepts for energy-efficient computing based on neuromorphic architectures-with computing capabilities in real-world applications yet to be demonstrated.

摘要

应对当今社会日益增长的能源需求是关键挑战之一。随着人工智能的兴起,信息和通信技术开始对这一令人担忧的趋势产生重大影响,因此未来需要更可持续的方法。受大脑启发的计算范式代表了一种全新的、可能更节能的计算方法,从长远来看,它可能会补充甚至取代互补金属氧化物半导体(CMOS)。从这个角度出发,我们阐述了复杂化学反应网络(CRN)的概念和特性,这些网络可以作为基于化学反应的信息处理单元。更简单的振荡化学反应的计算能力已经在从布尔门模拟到图像处理任务等各种场景中得到了证明。CRN具有更高的复杂性和更大的非线性,潜在能耗更低。基于CRN的计算机成功开发面临的关键挑战与其特定的物理实现、可操作性和读出方式有关。CRN对各种反应触发因素敏感,并提供多个相互关联的反应途径和多样的化合物空间。这为基于神经形态架构构建全新的、用于节能计算的硬件和软件概念带来了巨大潜力——其在实际应用中的计算能力还有待证明。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9035/10966114/41255888cd05/fnins-18-1379205-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验