Suppr超能文献

使用卷积神经网络通过胸部X光识别进行急性呼吸窘迫综合征(ARDS)自动监测。

Automatic ARDS surveillance with chest X-ray recognition using convolutional neural networks.

作者信息

Ye Run Zhou, Lipatov Kirill, Diedrich Daniel, Bhattacharyya Anirban, Erickson Bradley J, Pickering Brian W, Herasevich Vitaly

机构信息

Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, 200 First Street Southwest, Rochester, MN 55905, USA.; Division of Endocrinology, Department of Medicine, Centre de Recherche du CHUS, Sherbrooke QC J1H 5N4, Canada.

Critical Care Medicine, Mayo Clinic, Eau Claire, WI, United States.

出版信息

J Crit Care. 2024 Aug;82:154794. doi: 10.1016/j.jcrc.2024.154794. Epub 2024 Mar 28.

Abstract

OBJECTIVE

This study aims to design, validate and assess the accuracy a deep learning model capable of differentiation Chest X-Rays between pneumonia, acute respiratory distress syndrome (ARDS) and normal lungs.

MATERIALS AND METHODS

A diagnostic performance study was conducted using Chest X-Ray images from adult patients admitted to a medical intensive care unit between January 2003 and November 2014. X-ray images from 15,899 patients were assigned one of three prespecified categories: "ARDS", "Pneumonia", or "Normal".

RESULTS

A two-step convolutional neural network (CNN) pipeline was developed and tested to distinguish between the three patterns with sensitivity ranging from 91.8% to 97.8% and specificity ranging from 96.6% to 98.8%. The CNN model was validated with a sensitivity of 96.3% and specificity of 96.6% using a previous dataset of patients with Acute Lung Injury (ALI)/ARDS.

DISCUSSION

The results suggest that a deep learning model based on chest x-ray pattern recognition can be a useful tool in distinguishing patients with ARDS from patients with normal lungs, providing faster results than digital surveillance tools based on text reports.

CONCLUSION

A CNN-based deep learning model showed clinically significant performance, providing potential for faster ARDS identification. Future research should prospectively evaluate these tools in a clinical setting.

摘要

目的

本研究旨在设计、验证并评估一种能够区分肺炎、急性呼吸窘迫综合征(ARDS)和正常肺部的胸部X光片的深度学习模型的准确性。

材料与方法

利用2003年1月至2014年11月期间入住医疗重症监护病房的成年患者的胸部X光图像进行诊断性能研究。来自15899名患者的X光图像被指定为三个预先设定的类别之一:“ARDS”、“肺炎”或“正常”。

结果

开发并测试了一个两步卷积神经网络(CNN)流程,以区分这三种模式,灵敏度范围为91.8%至97.8%,特异性范围为96.6%至98.8%。使用先前的急性肺损伤(ALI)/ARDS患者数据集对CNN模型进行验证,其灵敏度为96.3%,特异性为96.6%。

讨论

结果表明,基于胸部X光片模式识别的深度学习模型可以成为区分ARDS患者和正常肺部患者的有用工具,比基于文本报告的数字监测工具能提供更快的结果。

结论

基于CNN的深度学习模型显示出具有临床意义的性能,为更快识别ARDS提供了潜力。未来的研究应在临床环境中对这些工具进行前瞻性评估。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验