Suppr超能文献

使用高斯混合模型对乳腺癌图像引导放疗中的摆位误差进行建模与预测

Modeling and prediction of set‑up errors in breast cancer image‑guided radiotherapy using the Gaussian mixture model.

作者信息

Dong Fangfen, Chen Jing, Liu Feiyu, Yang Zhiyu, Wu Yimin, Li Xiaobo

机构信息

Department of Radiation Oncology, Fujian Medical University Union Hospital/Fujian Key Laboratory of Intelligent Imaging and Precision Radiotherapy for Tumors/Clinical Research Center for Radiology and Radiotherapy of Fujian Province (Digestive, Hematological and Breast Malignancies), Fuzhou, Fujian 350001, P.R. China.

School of Medical Imaging, Fujian Medical University, Fuzhou, Fujian 350004, P.R. China.

出版信息

Oncol Lett. 2024 Sep 30;28(6):573. doi: 10.3892/ol.2024.14706. eCollection 2024 Dec.

Abstract

The aim of the present study was to develop a prediction model for set-up error distribution in breast cancer image-guided radiotherapy (IGRT) using a Gaussian mixture model (GMM). To achieve this, the image-guided set-up errors data of 80 patients with breast cancer were selected, and the GMM was used to develop the set-up errors distribution prediction model. The predicted error center points, covariance and probability were calculated and compared with the planning target volume (PTV) margin formula. A total of 1,200 sets of set-up errors in IGRT for breast cancer were collected. The results of the Gaussian model parameters showed that the set-up errors were mainly in the direction of µ-µ center points. All the raw errors in the lateral, longitudinal and vertical directions were -6.30-4.60, -5.40-1.47 and -2.70-1.70 mm, respectively. According to the probability of each center, the set-up error was most likely to shift in the µ direction, reaching 0.53. The set-up errors of the other three centers, µ, µ and µ, were 0.11, 0.34 and 0.12, respectively. According to the covariance parameters of the GMM, the maximum statistical standard deviation of the set-up errors reached 29.06. In conclusion, the results of the present study demonstrated that the GMM can be used to quantitatively describe and predict the distribution of set-up errors in IGRT for breast cancer, and these findings could be useful as a reference for set-up error control and tumor PTV expansion in breast cancer radiotherapy without routine, daily IGRT.

摘要

本研究的目的是使用高斯混合模型(GMM)开发一种用于乳腺癌图像引导放射治疗(IGRT)中摆位误差分布的预测模型。为实现这一目标,选取了80例乳腺癌患者的图像引导摆位误差数据,并使用GMM开发摆位误差分布预测模型。计算预测误差中心点、协方差和概率,并与计划靶区(PTV)边缘公式进行比较。共收集了1200组乳腺癌IGRT中的摆位误差。高斯模型参数结果显示,摆位误差主要集中在µ-µ中心点方向。横向、纵向和垂直方向的所有原始误差分别为-6.30 - 4.60、-5.40 - 1.47和-2.70 - 1.70 mm。根据每个中心的概率,摆位误差最有可能在µ方向偏移,达到0.53。其他三个中心µ、µ和µ的摆位误差分别为0.11、0.34和0.12。根据GMM的协方差参数,摆位误差的最大统计标准差达到29.06。总之,本研究结果表明,GMM可用于定量描述和预测乳腺癌IGRT中摆位误差的分布,这些发现可为乳腺癌放疗中无常规每日IGRT时的摆位误差控制和肿瘤PTV扩展提供参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f421/11467846/5e113d683c21/ol-28-06-14706-g05.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验