Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
Curr Biol. 2024 Apr 22;34(8):1687-1704.e8. doi: 10.1016/j.cub.2024.03.010. Epub 2024 Mar 29.
Neurons rely on the long-range trafficking of synaptic components to form and maintain the complex neural networks that encode the human experience. With a single neuron capable of forming thousands of distinct en passant synapses along its axon, spatially precise delivery of the necessary synaptic components is paramount. How these synapses are patterned, as well as how the efficient delivery of synaptic components is regulated, remains largely unknown. Here, we reveal a novel role for the microtubule (MT)-severing enzyme spastin in locally enhancing MT polymerization to influence presynaptic cargo pausing and retention along the axon. In human neurons derived from induced pluripotent stem cells (iPSCs), we identify sites stably enriched for presynaptic components along the axon prior to the robust assembly of mature presynapses apposed by postsynaptic contacts. These sites are capable of cycling synaptic vesicles, are enriched with spastin, and are hotspots for new MT growth and synaptic vesicle precursor (SVP) pausing/retention. The disruption of neuronal spastin level or activity, by CRISPRi-mediated depletion, transient overexpression, or pharmacologic inhibition of enzymatic activity, interrupts the localized enrichment of dynamic MT plus ends and diminishes SVP accumulation. Using an innovative human heterologous synapse model, where microfluidically isolated human axons recognize and form presynaptic connections with neuroligin-expressing non-neuronal cells, we reveal that neurons deficient for spastin do not achieve the same level of presynaptic component accumulation as control neurons. We propose a model where spastin acts locally as an amplifier of MT polymerization to pattern specific regions of the axon for synaptogenesis and guide synaptic cargo delivery.
神经元依赖突触成分的长距离运输来形成和维持编码人类经验的复杂神经网络。由于单个神经元能够在其轴突上形成数千个独特的暂态突触,因此空间精确地输送必要的突触成分至关重要。这些突触是如何形成的,以及如何调节突触成分的有效输送,在很大程度上仍然未知。在这里,我们揭示了微管(MT)切割酶 spastin 在局部增强 MT 聚合以影响轴突上顺式突触货物暂停和保留方面的新作用。在诱导多能干细胞(iPSC)衍生的人类神经元中,我们在成熟突触前突触与突触后接触对接之前,确定了沿轴突稳定富集顺式突触成分的部位。这些部位能够循环突触小泡,富含 spastin,并且是新的 MT 生长和突触小泡前体(SVP)暂停/保留的热点。通过 CRISPRi 介导的耗竭、瞬时过表达或酶活性的药理学抑制,破坏神经元 spastin 水平或活性,会中断动态 MT 正极的局部富集,并减少 SVP 的积累。使用创新的人类异源突触模型,其中微流控分离的人类轴突识别并与表达神经粘连蛋白的非神经元细胞形成突触前连接,我们揭示了 spastin 缺陷的神经元不能达到与对照神经元相同的突触前成分积累水平。我们提出了一个模型,其中 spastin 作为 MT 聚合的放大器在轴突的特定区域发挥作用,以形成突触发生并指导突触货物的输送。