Suppr超能文献

基于深度游走的图嵌入用于使用深度神经网络进行miRNA-疾病关联预测

DeepWalk-Based Graph Embeddings for miRNA-Disease Association Prediction Using Deep Neural Network.

作者信息

Ha Jihwan

机构信息

Major of Big Data Convergence, Division of Data Information Science, Pukyong National University, Busan 48513, Republic of Korea.

出版信息

Biomedicines. 2025 Feb 20;13(3):536. doi: 10.3390/biomedicines13030536.

Abstract

In recent years, micro ribonucleic acids (miRNAs) have been recognized as key regulators in numerous biological processes, particularly in the development and progression of diseases. As a result, extensive research has focused on uncovering the critical involvement of miRNAs in disease mechanisms to better comprehend the underlying causes of human diseases. Despite these efforts, relying solely on biological experiments to identify miRNA-disease associations is both time-consuming and costly, making it an impractical approach for large-scale studies. In this paper, we propose a novel DeepWalk-based graph embedding method for predicting miRNA-disease association (DWMDA). Using DeepWalk, we extracted meaningful low-dimensional vectors from the miRNA and disease networks. Then, we applied a deep neural network to identify miRNA-disease associations using the low-dimensional vectors of miRNAs and diseases extracted via DeepWalk. An ablation study was conducted to assess the proposed graph embedding modules. Furthermore, DWMDA demonstrates exceptional performance in two major cancer case studies (breast and lung), with results based on statistically robust measures, further emphasizing its reliability as a method for identifying associations between miRNAs and diseases. We expect that our model will not only facilitate the accurate prediction of disease-associated miRNAs but also serve as a generalizable framework for exploring interactions among various biological entities.

摘要

近年来,微小核糖核酸(miRNAs)已被公认为众多生物过程中的关键调节因子,尤其是在疾病的发生和发展过程中。因此,广泛的研究集中在揭示miRNAs在疾病机制中的关键作用,以便更好地理解人类疾病的潜在病因。尽管做出了这些努力,但仅依靠生物学实验来识别miRNA与疾病的关联既耗时又昂贵,使其对于大规模研究而言是一种不切实际的方法。在本文中,我们提出了一种基于深度随机游走的图嵌入方法来预测miRNA与疾病的关联(DWMDA)。利用深度随机游走,我们从miRNA和疾病网络中提取了有意义的低维向量。然后,我们应用深度神经网络,利用通过深度随机游走提取的miRNA和疾病的低维向量来识别miRNA与疾病的关联。进行了一项消融研究以评估所提出的图嵌入模块。此外,DWMDA在两项主要癌症案例研究(乳腺癌和肺癌)中表现出卓越的性能,其结果基于统计稳健的测量方法,进一步强调了其作为一种识别miRNAs与疾病之间关联的方法的可靠性。我们期望我们的模型不仅有助于准确预测与疾病相关的miRNAs,还能作为一个通用框架来探索各种生物实体之间的相互作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afa9/11940379/a31cffc8f895/biomedicines-13-00536-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验