Molnár Ferenc, Horvát Szabolcs, Ribeiro Gomes Ana R, Martinez Armas Jorge, Molnár Botond, Ercsey-Ravasz Mária, Knoblauch Kenneth, Kennedy Henry, Toroczkai Zoltan
Department of Physics, University of Notre Dame, Notre Dame, IN, USA.
Center for Systems Biology Dresden, Dresden, Germany.
Netw Neurosci. 2024 Apr 1;8(1):138-157. doi: 10.1162/netn_a_00345. eCollection 2024.
Despite a five order of magnitude range in size, the brains of mammals share many anatomical and functional characteristics that translate into cortical network commonalities. Here we develop a machine learning framework to quantify the degree of predictability of the weighted interareal cortical matrix. Partial network connectivity data were obtained with retrograde tract-tracing experiments generated with a consistent methodology, supplemented by projection length measurements in a nonhuman primate (macaque) and a rodent (mouse). We show that there is a significant level of predictability embedded in the interareal cortical networks of both species. At the binary level, links are predictable with an area under the ROC curve of at least 0.8 for the macaque. Weighted medium and strong links are predictable with an 85%-90% accuracy (mouse) and 70%-80% (macaque), whereas weak links are not predictable in either species. These observations reinforce earlier observations that the formation and evolution of the cortical network at the mesoscale is, to a large extent, rule based. Using the methodology presented here, we performed imputations on all area pairs, generating samples for the complete interareal network in both species. These are necessary for comparative studies of the connectome with minimal bias, both within and across species.
尽管哺乳动物的大脑在大小上有五个数量级的差异,但它们在解剖学和功能上有许多共同特征,这些特征转化为皮质网络的共性。在这里,我们开发了一个机器学习框架来量化加权区域间皮质矩阵的可预测程度。部分网络连接数据是通过采用一致方法进行的逆行束追踪实验获得,并辅以在非人类灵长类动物(猕猴)和啮齿动物(小鼠)中的投射长度测量。我们表明,这两个物种的区域间皮质网络中都存在显著水平的可预测性。在二元水平上,猕猴的ROC曲线下面积至少为0.8时,连接是可预测的。加权的中等和强连接以85%-90%的准确率(小鼠)和70%-80%(猕猴)是可预测的,而弱连接在这两个物种中都不可预测。这些观察结果强化了早期的观察,即中尺度皮质网络的形成和进化在很大程度上是基于规则的。使用这里介绍的方法,我们对所有区域对进行了插补,为这两个物种的完整区域间网络生成了样本。这些对于在物种内部和跨物种进行具有最小偏差的连接组比较研究是必要的。