Suppr超能文献

深度学习检测视网膜脱离:光学相干断层扫描分期及黄斑脱离持续时间估计

Deep learning detection of retinal detachment: Optical coherence tomography staging and estimation of duration of macular detachment.

作者信息

Beuse Ansgar, Lopes Inês V, Spitzer Martin S, Druchkiv Vasyl, Grohmann Carsten, Skevas Christos

机构信息

Department of Ophthalmology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.

出版信息

PLoS One. 2025 Sep 2;20(9):e0329951. doi: 10.1371/journal.pone.0329951. eCollection 2025.

Abstract

OBJECTIVE

To test the applicability of deep learning models for detecting and staging rhegmatogenous retinal detachment (RRD) based on morphological features using two- and three-dimensional optical coherence tomography (OCT) scans.

DESIGN

Retrospective study using deep learning-based image classification analysis of 2D and 3D OCT scans combined with clinical baseline data.

SUBJECTS

Adult patients presenting to the University Medical Center Hamburg-Eppendorf in Germany.

METHODS

A total of 252 eyes with RRD and 770 control eyes were included. All OCT scans and clinical baseline data were reviewed and graded. Binary and multiclass classification approaches were applied.

MAIN OUTCOME MEASURES

Area under the curve (AUC) and precision-recall area under the curve (PR AUC) for detection, stage classification and duration estimation of RRD.

RESULTS

We employed both statistical and deep learning-based approaches using 2D and 3D OCT data. We evaluated an automated 3D OCT classification model in a multiclass analysis to distinguish RRD scans by macula status from a non-RRD group with macula-on cases (PR AUC = 0.66 ± 0.12, AUC = 0.96 ± 0.01) vs. macula-off cases (PR AUC = 0.86 ± 0.07, 0.98 ± 0.01) against non-RRD cases (PR AUC = 1.00, AUC = 1.00) Furthermore, the 3D model was able to classify the duration of macula-off status (< 3 days) with a PR AUC of 0.68 ± 0.2 and a AUC of 0.97 ± 0.2 when compared to a mixed group including longer macular-off, macular-on and non RRD cases. Lastly, manually graded RRD Stages were correlated with best corrected visual acuity (BCVA), as well as macula-off Duration and classified via a 2D model. A 2D model used for RRD stage classification achieved its best performance for stage 4, with a PR AUC of 0.56 ± 0.11 and an AUC of 0.94 ± 0.02.

CONCLUSION

The machine learning models demonstrated strong performance in classifying RRD stages, macula status and duration based on OCT imaging. These findings highlight the potential of deep learning methods to support clinical decision-making and surgical planning in RRD management.

摘要

目的

基于二维和三维光学相干断层扫描(OCT)图像的形态学特征,测试深度学习模型在检测孔源性视网膜脱离(RRD)及进行分期的适用性。

设计

采用基于深度学习的二维和三维OCT扫描图像分类分析并结合临床基线数据的回顾性研究。

研究对象

德国汉堡-埃彭多夫大学医学中心的成年患者。

方法

共纳入252只RRD患眼和770只对照眼。对所有OCT扫描图像和临床基线数据进行回顾和分级。应用二分类和多分类方法。

主要观察指标

RRD检测、分期分类及病程估计的曲线下面积(AUC)和精确召回率曲线下面积(PR AUC)。

结果

我们采用基于二维和三维OCT数据的统计方法和深度学习方法。在多分类分析中,我们评估了一个自动三维OCT分类模型,以根据黄斑状态区分RRD扫描图像与黄斑在位的非RRD组病例(PR AUC = 0.66 ± 0.12,AUC = 0.96 ± 0.01)以及黄斑不在位病例(PR AUC = 0.86 ± 0.07,AUC = 0.98 ± 0.01)与非RRD病例(PR AUC = 1.00,AUC = 1.00)。此外,与包括黄斑不在位时间较长、黄斑在位及非RRD病例的混合组相比,三维模型能够以PR AUC为0.68 ± 0.2和AUC为0.97 ± 0.2对黄斑不在位状态的持续时间(<3天)进行分类。最后,手动分级的RRD分期与最佳矫正视力(BCVA)以及黄斑不在位持续时间相关,并通过二维模型进行分类。用于RRD分期分类的二维模型在4期表现最佳,PR AUC为0.56 ± 0.11,AUC为0.94 ± 0.02。

结论

机器学习模型在基于OCT成像对RRD分期、黄斑状态和病程进行分类方面表现出强大性能。这些发现凸显了深度学习方法在支持RRD管理中的临床决策和手术规划方面的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e34/12404480/1467c0428729/pone.0329951.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验