Suppr超能文献

AutoMorph:通过深度学习管道实现自动化视网膜血管形态定量分析。

AutoMorph: Automated Retinal Vascular Morphology Quantification Via a Deep Learning Pipeline.

机构信息

Centre for Medical Image Computing, University College London, London, UK.

NIHR Biomedical Research Centre for Ophthalmology, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK.

出版信息

Transl Vis Sci Technol. 2022 Jul 8;11(7):12. doi: 10.1167/tvst.11.7.12.

Abstract

PURPOSE

To externally validate a deep learning pipeline (AutoMorph) for automated analysis of retinal vascular morphology on fundus photographs. AutoMorph has been made publicly available, facilitating widespread research in ophthalmic and systemic diseases.

METHODS

AutoMorph consists of four functional modules: image preprocessing, image quality grading, anatomical segmentation (including binary vessel, artery/vein, and optic disc/cup segmentation), and vascular morphology feature measurement. Image quality grading and anatomical segmentation use the most recent deep learning techniques. We employ a model ensemble strategy to achieve robust results and analyze the prediction confidence to rectify false gradable cases in image quality grading. We externally validate the performance of each module on several independent publicly available datasets.

RESULTS

The EfficientNet-b4 architecture used in the image grading module achieves performance comparable to that of the state of the art for EyePACS-Q, with an F1-score of 0.86. The confidence analysis reduces the number of images incorrectly assessed as gradable by 76%. Binary vessel segmentation achieves an F1-score of 0.73 on AV-WIDE and 0.78 on DR HAGIS. Artery/vein scores are 0.66 on IOSTAR-AV, and disc segmentation achieves 0.94 in IDRID. Vascular morphology features measured from the AutoMorph segmentation map and expert annotation show good to excellent agreement.

CONCLUSIONS

AutoMorph modules perform well even when external validation data show domain differences from training data (e.g., with different imaging devices). This fully automated pipeline can thus allow detailed, efficient, and comprehensive analysis of retinal vascular morphology on color fundus photographs.

TRANSLATIONAL RELEVANCE

By making AutoMorph publicly available and open source, we hope to facilitate ophthalmic and systemic disease research, particularly in the emerging field of oculomics.

摘要

目的

对外验证一个深度学习管道(AutoMorph),以自动分析眼底照片上的视网膜血管形态。AutoMorph 已经公开提供,方便在眼科和全身性疾病研究中广泛使用。

方法

AutoMorph 由四个功能模块组成:图像预处理、图像质量分级、解剖分割(包括二进制血管、动脉/静脉和视盘/杯分割)以及血管形态特征测量。图像质量分级和解剖分割使用最新的深度学习技术。我们采用模型集成策略以获得稳健的结果,并分析预测置信度以纠正图像质量分级中的错误可分级情况。我们在几个独立的公开可用数据集上验证每个模块的性能。

结果

用于图像分级模块的 EfficientNet-b4 架构的性能与 EyePACS-Q 的最新技术相当,F1 得分为 0.86。置信度分析将错误评估为可分级的图像数量减少了 76%。在 AV-WIDE 上,二进制血管分割的 F1 得分为 0.73,在 DR HAGIS 上为 0.78。IOSTAR-AV 上的动脉/静脉分数为 0.66,IDRID 上的视盘分割达到 0.94。从 AutoMorph 分割图和专家注释测量的血管形态特征显示出良好到极好的一致性。

结论

即使外部验证数据显示与训练数据(例如,使用不同的成像设备)在域上存在差异,AutoMorph 模块的性能仍然良好。因此,这个全自动管道可以允许对彩色眼底照片上的视网膜血管形态进行详细、高效和全面的分析。

翻译

叶剑

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f4da/9290317/19c4e256715e/tvst-11-7-12-f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验