Wang Xiaoming, He Jiajing, Dan Yaping
Opt Express. 2024 Mar 25;32(7):10941-10947. doi: 10.1364/OE.516405.
The bottleneck in achieving fully integrated silicon photonics lies in silicon-based light-emitting devices that are compatible with standard CMOS technology. Dislocation loops created by implanting boron into silicon and annealing represent an enticing strategy to transform highly inefficient silicon into a luminescent material. However, the emission at telecommunication wavelength suffers from the strong thermal quenching effect, resulting in low efficiency at room temperature. Here, we applied a new deep cooling process to address this issue. Interestingly, we find that electrons and holes recombine through defects emitting two photons, one in near infrared (NIR, 1.3∼1.6 µm) and the other in mid-infrared band (MIR, around 3.5 µm). The photoluminescence intensity at NIR increases three fold when the temperature increases from 77 K to 300 K. Furthermore, the NIR light emission of reverse biased silicon diodes was significantly enhanced compared to forward bias, emitting the maximum output power of 42 nW at 60 mA. The results offer new opportunities for the development of infrared light sources in integrated circuits.
实现完全集成硅光子学的瓶颈在于与标准CMOS技术兼容的硅基发光器件。通过将硼注入硅中并进行退火而产生的位错环是一种诱人的策略,可将效率极低的硅转变为发光材料。然而,电信波长处的发射受到强烈的热猝灭效应影响,导致室温下效率较低。在此,我们应用了一种新的深度冷却工艺来解决这个问题。有趣的是,我们发现电子和空穴通过缺陷复合发射两个光子,一个在近红外(NIR,1.3∼1.6 µm)波段,另一个在中红外波段(MIR,约3.5 µm)。当温度从77 K升高到300 K时,近红外波段的光致发光强度增加了三倍。此外,与正向偏置相比,反向偏置硅二极管的近红外光发射显著增强,在60 mA时发射出42 nW的最大输出功率。这些结果为集成电路中红外光源的发展提供了新机遇。