Shoemaker K R, Kim P S, Brems D N, Marqusee S, York E J, Chaiken I M, Stewart J M, Baldwin R L
Proc Natl Acad Sci U S A. 1985 Apr;82(8):2349-53. doi: 10.1073/pnas.82.8.2349.
The residues responsible for the pH-dependent stability of the helix formed by the isolated C-peptide (residues 1-13 of ribonuclease A) have been identified by chemical synthesis of analogues and measurement of their helix-forming properties. Each of the residues ionizing between pH 2 and pH 8 has been replaced separately by an uncharged residue. Protonation of Glu-2- is responsible for the sharp decrease in helix stability between pH 5 and pH 2, and deprotonation of His-12+ causes a similar decrease between pH 5 and pH 8. Glu-9- is not needed for helix stability. The results cannot be explained by the Zimm-Bragg model and host-guest data for alpha-helix formation, which predict that the stability of the C-peptide helix should increase when Glu-2- is protonated or when His-12+ is deprotonated. Moreover, histidine+ is a strong helix-breaker in host-guest studies. In proteins, acidic and basic residues tend to occur at opposite ends of alpha-helices: acidic residues occur preferentially near the NH2-terminal end and basic residues near the COOH-terminal end. A possible explanation, based on a helix dipole model, has been given [Blagdon, D. E. & Goodman, M. (1975) Biopolymers 14, 241-245]. Our results are consistent with the helix dipole model and they support the suggestion that the distribution of charged residues in protein helices reflects the helix-stabilizing propensity of those residues. Because Glu-9 is not needed for helix stability, a possible Glu-9-...His-12+ salt bridge does not contribute significantly to helix stability. The role of a possible Glu-2-...Arg-10+ salt bridge has not yet been evaluated. A charged-group effect on alpha-helix stability in water has also been observed in a different peptide system [Ihara, S., Ooi, T. & Takahashi, S. (1982) Biopolymers 21, 131-145]: block copolymers containing (Ala)20 and (Glu)20 show partial helix formation at low temperatures, pH 7.5, where the glutamic acid residues are ionized. (Glu)20(Ala)20Phe forms a helix that is markedly more stable than (Ala)20(Glu)20Phe. The results are consistent with a helix dipole model.
通过对类似物进行化学合成并测量其形成螺旋的特性,已确定了负责由分离的C肽(核糖核酸酶A的1 - 13位残基)形成的螺旋的pH依赖性稳定性的残基。在pH 2至pH 8之间发生电离的每个残基已分别被一个不带电荷的残基取代。Glu-2-的质子化导致pH 5至pH 2之间螺旋稳定性急剧下降,而His-12+的去质子化在pH 5至pH 8之间导致类似的下降。Glu-9-对螺旋稳定性不是必需的。这些结果无法用Zimm-Bragg模型以及α-螺旋形成的主客体数据来解释,这些模型预测当Glu-2-质子化或His-12+去质子化时,C肽螺旋的稳定性应该增加。此外,在主客体研究中,组氨酸+是一种很强的螺旋破坏剂。在蛋白质中,酸性和碱性残基倾向于出现在α-螺旋的相对两端:酸性残基优先出现在NH2末端附近,碱性残基出现在COOH末端附近。基于螺旋偶极模型给出了一种可能的解释[Blagdon, D. E. & Goodman, M. (1975) Biopolymers 14, 241 - 245]。我们的结果与螺旋偶极模型一致,并且支持这样的观点,即蛋白质螺旋中带电残基的分布反映了这些残基的螺旋稳定倾向。因为Glu-9对螺旋稳定性不是必需的,所以可能的Glu-9-...His-12+盐桥对螺旋稳定性的贡献不大。尚未评估可能的Glu-2-...Arg-10+盐桥的作用。在另一个肽系统中也观察到了带电基团对水中α-螺旋稳定性的影响[Ihara, S., Ooi, T. & Takahashi, S. (1982) Biopolymers 21, 131 - 145]:含有(Ala)20和(Glu)20的嵌段共聚物在低温、pH 7.5时显示出部分螺旋形成,此时谷氨酸残基是离子化的。(Glu)20(Ala)20Phe形成的螺旋比(Ala)20(Glu)20Phe形成的螺旋明显更稳定。这些结果与螺旋偶极模型一致。