Department of Physiotherapy, Integral University, Lucknow, India.
Department of Electrical Engineering, Integral University, Lucknow, India.
Front Public Health. 2024 Mar 21;12:1307592. doi: 10.3389/fpubh.2024.1307592. eCollection 2024.
Mechanical neck pain has become prevalent among computer professionals possibly because of prolonged computer use. This study aimed to investigate the relationship between neck pain intensity, anthropometric metrics, cervical range of motion, and related disabilities using advanced machine learning techniques.
This study involved 75 computer professionals, comprising 27 men and 48 women, aged between 25 and 44 years, all of whom reported neck pain following extended computer sessions. The study utilized various tools, including the visual analog scale (VAS) for pain measurement, anthropometric tools for body metrics, a Universal Goniometer for cervical ROM, and the Neck Disability Index (NDI). For data analysis, the study employed SPSS (v16.0) for basic statistics and a suite of machine-learning algorithms to discern feature importance. The capability of the kNN algorithm is evaluated using its confusion matrix.
The "NDI Score (%)" consistently emerged as the most significant feature across various algorithms, while metrics like age and computer usage hours varied in their rankings. Anthropometric results, such as BMI and body circumference, did not maintain consistent ranks across algorithms. The confusion matrix notably demonstrated its classification process for different VAS scores (mild, moderate, and severe). The findings indicated that 56% of the pain intensity, as measured by the VAS, could be accurately predicted by the dataset.
Machine learning clarifies the system dynamics of neck pain among computer professionals and highlights the need for different algorithms to gain a comprehensive understanding. Such insights pave the way for creating tailored ergonomic solutions and health campaigns for this population.
机械性颈部疼痛在计算机专业人员中变得越来越普遍,可能是由于长时间使用计算机所致。本研究旨在利用先进的机器学习技术研究颈部疼痛强度、人体测量指标、颈椎活动范围和相关残疾之间的关系。
本研究涉及 75 名计算机专业人员,包括 27 名男性和 48 名女性,年龄在 25 岁至 44 岁之间,所有参与者在长时间使用计算机后均报告有颈部疼痛。研究使用了多种工具,包括视觉模拟量表(VAS)用于疼痛测量、人体测量工具用于身体指标、通用测角器用于颈椎 ROM 和颈部残疾指数(NDI)。为了进行数据分析,本研究使用了 SPSS(v16.0)进行基本统计分析,并使用了一套机器学习算法来辨别特征的重要性。使用 kNN 算法的混淆矩阵评估其能力。
“NDI 评分(%)”始终是各种算法中最重要的特征,而年龄和计算机使用时间等指标的排名则有所不同。人体测量结果,如 BMI 和身体周长,在不同算法中的排名并不一致。混淆矩阵显著展示了其对不同 VAS 评分(轻度、中度和重度)的分类过程。研究结果表明,VAS 测量的 56%的疼痛强度可以通过数据集进行准确预测。
机器学习阐明了计算机专业人员颈部疼痛的系统动态,并强调需要使用不同的算法来全面了解。这些见解为为该人群创建定制的人体工程学解决方案和健康活动铺平了道路。