Suppr超能文献

DIODEM——运动链运动的多样化惯性和光学数据集。

DIODEM - A Diverse Inertial and Optical Dataset of kinEmatic chain Motion.

作者信息

Bachhuber Simon, Lehmann Dustin, Weygers Ive, Seel Thomas

机构信息

Leibniz Universität Hannover, Institute of Mechatronic Systems, Hannover, 30167, Germany.

Technische Universität Berlin, Control Systems Group, Berlin, 10587, Germany.

出版信息

Sci Data. 2025 Jul 23;12(1):1285. doi: 10.1038/s41597-025-05468-w.

Abstract

Inertial Motion Tracking (IMT) faces critical challenges including magnetometer-free sensing, sparse sensor configurations, sensor-to-segment alignment, and motion artifact compensation. Current IMT algorithms require systematic evaluation across combinations of these challenges in controlled environments with accurate ground truth data. This paper presents DIODEM-a comprehensive dataset comprising 46 minutes of synchronized optical and inertial data from five-segment Kinematic Chains (KCs). The dataset features 20 markers and ten IMUs (both rigidly and foam-attached) across two distinct kinematic configurations: an "arm" chain with hinge and spherical joints, and a "gait" chain with hinge and saddle joints. The KCs perform diverse motions including random movements at various speeds, pick-and-place tasks, and gait-like patterns. Key technical contributions include: (1) mechanically controlled setup with known kinematics, (2) systematic inclusion of motion artifacts through foam-attached IMUs, (3) diverse joint types including 1D, 2D, and 3D joints, and (4) comprehensive motion variety supporting sparse sensing scenarios. The dataset enables researchers to systematically study individual and combined IMT challenges, facilitating algorithm development for applications ranging from biomechanics to autonomous systems.

摘要

惯性运动跟踪(IMT)面临着诸多关键挑战,包括无磁强计传感、稀疏传感器配置、传感器与肢体节段对齐以及运动伪影补偿。当前的IMT算法需要在具有准确地面真值数据的受控环境中,针对这些挑战的组合进行系统评估。本文介绍了DIODEM——一个全面的数据集,包含来自五节段运动链(KC)的46分钟同步光学和惯性数据。该数据集具有20个标记点和十个惯性测量单元(IMU,包括刚性连接和泡沫附着两种方式),涵盖两种不同的运动学配置:一种是带有铰链和球形关节的“手臂”链,另一种是带有铰链和鞍形关节的“步态”链。这些运动链执行多种运动,包括不同速度的随机运动、抓取和放置任务以及类似步态的模式。关键技术贡献包括:(1)具有已知运动学的机械控制设置;(2)通过泡沫附着的IMU系统地引入运动伪影;(3)包括一维、二维和三维关节在内的多种关节类型;(4)支持稀疏传感场景的全面运动多样性。该数据集使研究人员能够系统地研究单个和组合的IMT挑战,促进从生物力学到自主系统等应用领域的算法开发。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5013/12287372/7ea904029f72/41597_2025_5468_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验