Qin Huajun, Dreyer Rouven, Woltersdorf Georg, Taniyama Tomoyasu, van Dijken Sebastiaan
NanoSpin, Department of Applied Physics, Aalto University School of Science, Aalto, FI-00076, Finland.
Institute of Physics, Martin Luther University Halle-Wittenberg, 06120, Halle, Germany.
Adv Mater. 2021 Jul;33(27):e2100646. doi: 10.1002/adma.202100646. Epub 2021 May 29.
Magnetoelectric coupling in multiferroic heterostructures offers a promising platform for electric-field control of magnonic devices based on low-power spin-wave transport. Here, electric-field manipulation of the amplitude and phase of propagating spin waves in a ferromagnetic Fe film on top of a ferroelectric BaTiO substrate is demonstrated experimentally. Electric-field effects in this composite material system are mediated by strain coupling between alternating ferroelectric stripe domains with in-plane and perpendicular polarization and fully correlated magnetic anisotropy domains with differing spin-wave transport properties. The propagation of spin waves across the strain-induced magnetic anisotropy domains of the Fe film is directly imaged and it is shown how reversible electric-field-driven motion of ferroelectric domain walls and pinned anisotropy boundaries turns the spin-wave signal on and off. Furthermore, linear electric-field tuning of the spin-wave phase by altering the width of strain-coupled stripe domains is demonstrated. The results provide a new route toward energy-efficient reconfigurable magnonics.
多铁性异质结构中的磁电耦合为基于低功耗自旋波传输的磁振子器件的电场控制提供了一个很有前景的平台。在此,通过实验证明了在铁电体BaTiO衬底上的铁磁体Fe薄膜中,电场对传播的自旋波的振幅和相位的操纵。这种复合材料系统中的电场效应是由具有面内和面外极化的交替铁电条纹畴与具有不同自旋波传输特性的完全相关磁各向异性畴之间的应变耦合介导的。自旋波在Fe薄膜的应变诱导磁各向异性畴上的传播被直接成像,并且展示了铁电畴壁和固定各向异性边界的可逆电场驱动运动如何开启和关闭自旋波信号。此外,还展示了通过改变应变耦合条纹畴的宽度对自旋波相位进行线性电场调谐。这些结果为实现节能型可重构磁振子学提供了一条新途径。