Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390.
Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390.
Proc Natl Acad Sci U S A. 2024 Apr 16;121(16):e2321447121. doi: 10.1073/pnas.2321447121. Epub 2024 Apr 9.
The SNAP receptor (SNARE) proteins syntaxin-1, SNAP-25, and synaptobrevin mediate neurotransmitter release by forming tight SNARE complexes that fuse synaptic vesicles with the plasma membranes in microseconds. Membrane fusion is generally explained by the action of proteins on macroscopic membrane properties such as curvature, elastic modulus, and tension, and a widespread model envisions that the SNARE motifs, juxtamembrane linkers, and C-terminal transmembrane regions of synaptobrevin and syntaxin-1 form continuous helices that act mechanically as semirigid rods, squeezing the membranes together as they assemble ("zipper") from the N to the C termini. However, the mechanism underlying fast SNARE-induced membrane fusion remains unknown. We have used all-atom molecular dynamics simulations to investigate this mechanism. Our results need to be interpreted with caution because of the limited number and length of the simulations, but they suggest a model of membrane fusion that has a natural physicochemical basis, emphasizes local molecular events over general membrane properties, and explains extensive experimental data. In this model, the central event that initiates fast (microsecond scale) membrane fusion occurs when the SNARE helices zipper into the juxtamembrane linkers which, together with the adjacent transmembrane regions, promote encounters of acyl chains from both bilayers at the polar interface. The resulting hydrophobic nucleus rapidly expands into stalk-like structures that gradually progress to form a fusion pore, aided by the SNARE transmembrane regions and without clearly discernible intermediates. The propensity of polyunsaturated lipids to participate in encounters that initiate fusion suggests that these lipids may be important for the high speed of neurotransmitter release.
SNARE 受体(SNARE)蛋白突触融合蛋白-1、突触融合蛋白-25 和囊泡相关膜蛋白通过形成紧密的 SNARE 复合物,在微秒内将突触小泡与质膜融合,从而介导神经递质的释放。膜融合通常通过蛋白质对宏观膜特性(如曲率、弹性模量和张力)的作用来解释,一种广泛的模型设想囊泡相关膜蛋白和突触融合蛋白-1 的 SNARE 基序、近膜连接区和 C 端跨膜区形成连续的螺旋,作为半刚性棒机械作用,在从 N 端到 C 端组装时(“拉链”)将膜挤压在一起。然而,快速 SNARE 诱导的膜融合的机制仍然未知。我们使用全原子分子动力学模拟来研究这种机制。由于模拟的数量和长度有限,我们的结果需要谨慎解释,但它们提出了一种膜融合模型,该模型具有自然的物理化学基础,强调局部分子事件而不是一般的膜特性,并解释了广泛的实验数据。在这个模型中,启动快速(微秒级)膜融合的核心事件发生在 SNARE 螺旋拉链进入近膜连接区时,近膜连接区与相邻的跨膜区一起促进两个双层在极性界面处的酰基链相遇。由此产生的疏水性核迅速扩展成类似于茎的结构,在 SNARE 跨膜区的帮助下,逐渐形成融合孔,而没有明显可辨的中间体。多不饱和脂质参与引发融合的相遇的倾向表明,这些脂质可能对神经递质释放的高速至关重要。