Department of Plant Breeding and Genetics, University of Punjab, Lahore, P.O BOX 54590, Pakistan.
School of Biological Sciences and Technology, Liupanshui Normal University, Liupanshui, 553004, China.
Funct Integr Genomics. 2024 Apr 10;24(2):73. doi: 10.1007/s10142-024-01352-9.
Vitamin C, also known as ascorbic acid, is an essential nutrient that plays a critical role in many physiological processes in plants and animals. In humans, vitamin C is an antioxidant, reducing agent, and cofactor in diverse chemical processes. The established role of vitamin C as an antioxidant in plants is well recognized. It neutralizes reactive oxygen species (ROS) that can cause damage to cells. Also, it plays an important role in recycling other antioxidants, such as vitamin E, which helps maintain the overall balance of the plant's antioxidant system. However, unlike plants, humans cannot synthesize ascorbic acid or vitamin C in their bodies due to the absence of an enzyme called gulonolactone oxidase. This is why humans need to obtain vitamin C through their diet. Different fruits and vegetables contain varying levels of vitamin C. The biosynthesis of vitamin C in plants occurs primarily in the chloroplasts and the endoplasmic reticulum (ER). The biosynthesis of vitamin C is a complex process regulated by various factors such as light, temperature, and plant hormones. Recent research has identified several key genes that regulate vitamin C biosynthesis, including the GLDH and GLDH genes. The expression of these genes is known to be regulated by various factors such as light, temperature, and plant hormones. Recent studies highlight vitamin C's crucial role in regulating plant stress response pathways, encompassing drought, high salinity, and oxidative stress. The key enzymes in vitamin C biosynthesis are L-galactose dehydrogenase (GLDH) and L-galactono-1, 4-lactone dehydrogenase (GLDH). Genetic studies reveal key genes like GLDH and GLDH in Vitamin C biosynthesis, offering potential for crop improvement. Genetic variations influence nutritional content through their impact on vitamin C levels. Investigating the roles of genes in stress responses provides insights for developing resilient techniques in crop growth. Some fruits and vegetables, such as oranges, lemons, and grapefruits, along with strawberries and kiwi, are rich in vitamin C. Guava. Papaya provides a boost of vitamin C and dietary fiber. At the same time, red and yellow bell peppers, broccoli, pineapple, mangoes, and kale are additional sources of this essential nutrient, promoting overall health. In this review, we will discuss a brief history of Vitamin C and its signaling and biosynthesis pathway and summarize the regulation of its content in various fruits and vegetables.
维生素 C,也称为抗坏血酸,是一种必需的营养物质,在动植物的许多生理过程中起着关键作用。在人类中,维生素 C 是一种抗氧化剂、还原剂和多种化学过程的辅助因子。维生素 C 作为植物抗氧化剂的作用已得到广泛认可。它可以中和活性氧 (ROS),这些 ROS 会对细胞造成损害。此外,它在回收其他抗氧化剂(如维生素 E)方面发挥着重要作用,有助于维持植物抗氧化系统的整体平衡。然而,与植物不同,由于缺乏一种名为古洛糖酸内酯氧化酶的酶,人类无法在体内合成抗坏血酸或维生素 C。这就是为什么人类需要通过饮食来获取维生素 C。不同的水果和蔬菜含有不同水平的维生素 C。植物中维生素 C 的生物合成主要发生在叶绿体和内质网 (ER) 中。维生素 C 的生物合成是一个受多种因素(如光、温度和植物激素)调节的复杂过程。最近的研究已经确定了几个调节维生素 C 生物合成的关键基因,包括 GLDH 和 GLDH 基因。这些基因的表达已知受到光、温度和植物激素等多种因素的调节。最近的研究强调了维生素 C 在调节植物应激反应途径中的关键作用,包括干旱、高盐度和氧化应激。维生素 C 生物合成的关键酶是 L-半乳糖酸脱氢酶 (GLDH) 和 L-半乳糖酸-1,4-内酯脱氢酶 (GLDH)。遗传研究揭示了维生素 C 生物合成中的关键基因,如 GLDH 和 GLDH,为作物改良提供了潜力。遗传变异通过影响维生素 C 水平来影响营养成分。研究基因在应激反应中的作用为开发作物生长的弹性技术提供了思路。一些水果和蔬菜,如橙子、柠檬和葡萄柚,以及草莓和猕猴桃,富含维生素 C。番石榴。木瓜提供了维生素 C 和膳食纤维的补充。同时,红、黄甜椒、西兰花、菠萝、芒果和羽衣甘蓝也是这种必需营养素的其他来源,促进整体健康。在这篇综述中,我们将讨论维生素 C 的简要历史及其信号转导和生物合成途径,并总结其在各种水果和蔬菜中的含量调节。