Department of Anatomy, Biomedical Center, Faculty of Medicine, University of Iceland, Reykjavik, Iceland.
Department of Biochemistry and Molecular Biology, Biomedical Center, Faculty of Medicine, University of Iceland, Reykjavik, Iceland.
Traffic. 2024 Apr;25(4):e12933. doi: 10.1111/tra.12933.
Macroautophagy/autophagy is an essential catabolic process that targets a wide variety of cellular components including proteins, organelles, and pathogens. ATG7, a protein involved in the autophagy process, plays a crucial role in maintaining cellular homeostasis and can contribute to the development of diseases such as cancer. ATG7 initiates autophagy by facilitating the lipidation of the ATG8 proteins in the growing autophagosome membrane. The noncanonical isoform ATG7(2) is unable to perform ATG8 lipidation; however, its cellular regulation and function are unknown. Here, we uncovered a distinct regulation and function of ATG7(2) in contrast with ATG7(1), the canonical isoform. First, affinity-purification mass spectrometry analysis revealed that ATG7(2) establishes direct protein-protein interactions (PPIs) with metabolic proteins, whereas ATG7(1) primarily interacts with autophagy machinery proteins. Furthermore, we identified that ATG7(2) mediates a decrease in metabolic activity, highlighting a novel splice-dependent function of this important autophagy protein. Then, we found a divergent expression pattern of ATG7(1) and ATG7(2) across human tissues. Conclusively, our work uncovers the divergent patterns of expression, protein interactions, and function of ATG7(2) in contrast to ATG7(1). These findings suggest a molecular switch between main catabolic processes through isoform-dependent expression of a key autophagy gene.
自噬是一种重要的分解代谢过程,可靶向多种细胞成分,包括蛋白质、细胞器和病原体。自噬过程中涉及的蛋白 ATG7 在维持细胞内稳态方面起着至关重要的作用,并可能导致癌症等疾病的发展。ATG7 通过促进自噬体膜中 ATG8 蛋白的脂质化来启动自噬。非典型同工型 ATG7(2) 无法进行 ATG8 脂质化;然而,其细胞调节和功能尚不清楚。在这里,我们揭示了 ATG7(2)与经典同工型 ATG7(1)相比,具有独特的调节和功能。首先,亲和纯化质谱分析表明,ATG7(2)与代谢蛋白建立直接的蛋白质-蛋白质相互作用 (PPI),而 ATG7(1)主要与自噬机制蛋白相互作用。此外,我们发现 ATG7(2)介导代谢活性降低,突出了这种重要自噬蛋白的新型剪接依赖性功能。然后,我们发现 ATG7(1)和 ATG7(2)在人类组织中的表达模式存在差异。总之,我们的工作揭示了 ATG7(2)与 ATG7(1)相比,在表达、蛋白相互作用和功能方面的差异模式。这些发现表明,通过关键自噬基因的同工型依赖性表达,在主要分解代谢过程之间存在分子开关。