Suppr超能文献

利用人工智能分析增强微量移液器吸液。

Enhancing micropipette aspiration with artificial-intelligence analysis.

机构信息

Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile, USACH, Santiago de Chile, Chile; Departamento de Ciencia de Materiales, ETSI de Caminos, Universidad Politécnica de Madrid, Madrid, Spain; Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alracón, Spain.

Departamento de Ciencia de Materiales, ETSI de Caminos, Universidad Politécnica de Madrid, Madrid, Spain; Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alracón, Spain; Instituto de Investigación Sanitaria Hospital Clínico San Carlos, IdISSC, Madrid, Spain.

出版信息

Biophys J. 2024 Sep 3;123(17):2860-2868. doi: 10.1016/j.bpj.2024.04.006. Epub 2024 Apr 10.

Abstract

The micropipette-aspiration technique is commonly used in the field of mechanobiology, offering a variety of measurement types. To extract biophysical parameters from the experiments, numerical analysis is required. Although previous works have developed techniques for the partial automation of these analyses, these approaches are relatively time consuming for the researchers. In this article, we describe the development and application of an artificial-intelligence tool for the completely automatic analysis of micropipette-aspiration experiments. The use of this tool is compared with previous methods and the impressive reduction in the time required for these analyses is discussed. The new tool opens new possibilities for the micropipette-aspiration technique by enabling dealing with large numbers of experiments and real-time measurements.

摘要

微量移液器吸液技术在力学生物学领域中得到广泛应用,提供了多种测量类型。为了从实验中提取生物物理参数,需要进行数值分析。虽然之前的工作已经开发出了部分自动化分析这些实验的技术,但这些方法对于研究人员来说相对耗时。在本文中,我们描述了一种人工智能工具的开发和应用,该工具可用于完全自动化地分析微量移液器吸液实验。将该工具的使用与之前的方法进行了比较,并讨论了这些分析所需时间的显著减少。通过实现处理大量实验和实时测量的功能,该新工具为微量移液器吸液技术开辟了新的可能性。

相似文献

1
Enhancing micropipette aspiration with artificial-intelligence analysis.利用人工智能分析增强微量移液器吸液。
Biophys J. 2024 Sep 3;123(17):2860-2868. doi: 10.1016/j.bpj.2024.04.006. Epub 2024 Apr 10.
6
Methods for managing miscarriage: a network meta-analysis.流产管理方法:网络荟萃分析。
Cochrane Database Syst Rev. 2021 Jun 1;6(6):CD012602. doi: 10.1002/14651858.CD012602.pub2.

引用本文的文献

1
Machine learning tools advance biophysics.机器学习工具推动生物物理学发展。
Biophys J. 2024 Sep 3;123(17):E1-E3. doi: 10.1016/j.bpj.2024.07.036. Epub 2024 Aug 21.

本文引用的文献

6
Some thoughts on the future of cell mechanics.关于细胞力学未来的一些思考。
Biophys Rev. 2019 Oct;11(5):667-670. doi: 10.1007/s12551-019-00597-0. Epub 2019 Sep 16.
9
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.更快的 R-CNN:基于区域建议网络的实时目标检测。
IEEE Trans Pattern Anal Mach Intell. 2017 Jun;39(6):1137-1149. doi: 10.1109/TPAMI.2016.2577031. Epub 2016 Jun 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验