Suppr超能文献

骨关节炎研究中优化多维有序MRI数据分析的方法:一种观点。

Approaches to optimize analyses of multidimensional ordinal MRI data in osteoarthritis research: A perspective.

作者信息

Collins Jamie E, Roemer Frank W, Guermazi Ali

机构信息

Orthopaedics and Arthritis Center of Outcomes Research, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, BTM Suite 5016, Boston, MA, 02115, USA.

Quantitative Imaging Center, Department of Radiology, Boston University School of Medicine, 820 Harrison Avenue, FGH Building, 4th Floor, Boston, MA, 02118, USA.

出版信息

Osteoarthr Cartil Open. 2024 Mar 27;6(2):100465. doi: 10.1016/j.ocarto.2024.100465. eCollection 2024 Jun.

Abstract

OBJECTIVE

Knee osteoarthritis (OA) is a disease of the whole joint involving multiple tissue types. MRI-based semi-quantitative (SQ) scoring of knee OA is a method to perform multi-tissue joint assessment and has been shown to be a valid and reliable way to measure structural multi-tissue involvement and progression of the disease. While recent work has described how SQ scoring may be used for clinical trial enrichment and disease phenotyping in OA, less guidance is available for how these parameters may be used to assess study outcomes.

DESIGN

Here we present recommendations for summarizing disease progression within specific tissue types. We illustrate how various methods may be used to quantify longitudinal change using SQ scoring and review examples from the literature.

RESULTS

Approaches to quantify longitudinal change across subregions include the count of number of subregions, delta-subregion, delta-sum, and maximum grade changes. Careful attention should be paid to features that may fluctuate, such as bone marrow lesions, or with certain interventions, for example pharmacologic interventions with anticipated cartilage anabolic effects. The statistical approach must align with the nature of the outcome.

CONCLUSIONS

SQ scoring presents a way to understand disease progression across the whole joint. As OA is increasingly recognized as a heterogeneous disease with different phenotypes a better understanding of longitudinal progression across tissue types may present an opportunity to match study outcome to patient phenotype or to treatment mechanism of action.

摘要

目的

膝关节骨关节炎(OA)是一种累及多种组织类型的全关节疾病。基于磁共振成像(MRI)的膝关节OA半定量(SQ)评分是一种进行多组织关节评估的方法,已被证明是测量疾病结构多组织受累情况及进展的有效且可靠的方式。虽然近期研究描述了SQ评分如何用于OA的临床试验富集和疾病表型分析,但对于如何使用这些参数评估研究结果的指导较少。

设计

在此,我们提出关于总结特定组织类型内疾病进展的建议。我们举例说明如何使用各种方法通过SQ评分量化纵向变化,并回顾文献中的实例。

结果

量化跨子区域纵向变化的方法包括子区域数量计数、子区域差值、总和差值以及最大分级变化。应特别关注可能波动的特征,如骨髓病变,或在某些干预措施下,例如具有预期软骨合成代谢作用的药物干预。统计方法必须与结果的性质相符。

结论

SQ评分提供了一种了解全关节疾病进展的方法。由于OA越来越被认为是一种具有不同表型的异质性疾病,更好地理解跨组织类型的纵向进展可能为使研究结果与患者表型或治疗作用机制相匹配提供契机。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97fb/11004399/865e56631db1/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验