Suppr超能文献

谁支持伯尼?在 2020 年民主党初选中分析推特上的身份和意识形态差异。

Who supports Bernie? Analyzing identity and ideological variation on Twitter during the 2020 democratic primaries.

机构信息

Lyman Briggs College and Department of Sociology, Michigan State University, East Lansing, MI, United States of America.

Department of Media & Information, Michigan State University, East Lansing, MI, United States of America.

出版信息

PLoS One. 2024 Apr 11;19(4):e0294735. doi: 10.1371/journal.pone.0294735. eCollection 2024.

Abstract

Using a novel dataset of 590M messages by 21M users, we present the first large-scale examination of the behavior of likely Bernie supporters on Twitter during the 2020 U.S. Democratic primaries and presidential election. We use these data to dispel empirically the notion of a unified, stereotypical Bernie supporter (e.g., the "Bernie Bro"). Instead, our work uncovers significant variation in the identities and ideologies of Bernie supporters who were active on Twitter. Our work makes three contributions to the literature on social media and social movements. Methodologically, we present a novel mixed methods approach to surface identity and ideological variation within a movement via use of patterns in who retweets whom (i.e. who retweets which other users) and who retweets what (i.e. who retweets which specific tweets). Substantively, documentation of these variations challenges a trend in the social movement literature to assume actors within a particular movement are unified in their ideology, identity, and values.

摘要

利用一个包含 5.9 亿条消息和 2100 万用户的新颖数据集,我们首次大规模研究了 2020 年美国民主党初选和总统选举期间可能支持伯尼的用户在 Twitter 上的行为。我们使用这些数据从经验上驳斥了关于统一的、刻板的伯尼支持者(例如,“伯尼兄弟”)的观念。相反,我们的工作揭示了在 Twitter 上活跃的伯尼支持者在身份和意识形态方面的显著差异。我们的工作为社交媒体和社会运动文献做出了三项贡献。从方法论上讲,我们通过使用谁转发谁(即谁转发哪些其他用户)以及谁转发什么(即谁转发哪些特定推文)的模式,提出了一种新颖的混合方法来揭示运动内部的身份和意识形态差异。从实质上讲,这些变化的记录挑战了社会运动文献中的一种趋势,即假定特定运动中的参与者在其意识形态、身份和价值观方面是统一的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c9c/11008827/c251fe4d2e0b/pone.0294735.g001.jpg

相似文献

1
Who supports Bernie? Analyzing identity and ideological variation on Twitter during the 2020 democratic primaries.
PLoS One. 2024 Apr 11;19(4):e0294735. doi: 10.1371/journal.pone.0294735. eCollection 2024.
4
Social Media Activism and Convergence in Tweet Topics After the Initial #MeToo Movement for Two Distinct Groups of Twitter Users.
J Interpers Violence. 2022 Aug;37(15-16):NP13603-NP13622. doi: 10.1177/08862605211001481. Epub 2021 Apr 12.
5
#Election2020: the first public Twitter dataset on the 2020 US Presidential election.
J Comput Soc Sci. 2022;5(1):1-18. doi: 10.1007/s42001-021-00117-9. Epub 2021 Apr 2.
8
Tweeting From Left to Right: Is Online Political Communication More Than an Echo Chamber?
Psychol Sci. 2015 Oct;26(10):1531-42. doi: 10.1177/0956797615594620. Epub 2015 Aug 21.
10
Ratioing the President: An exploration of public engagement with Obama and Trump on Twitter.
PLoS One. 2021 Apr 14;16(4):e0248880. doi: 10.1371/journal.pone.0248880. eCollection 2021.

本文引用的文献

2
Demographic Representation and Collective Storytelling in the Me Too Twitter Hashtag Activism Movement.
Proc ACM Hum Comput Interact. 2021 Apr;5(CSCW1). doi: 10.1145/3449181.
3
Measuring the news and its impact on democracy.
Proc Natl Acad Sci U S A. 2021 Apr 13;118(15). doi: 10.1073/pnas.1912443118.
4
Bots are less central than verified accounts during contentious political events.
Proc Natl Acad Sci U S A. 2021 Mar 16;118(11). doi: 10.1073/pnas.2013443118.
5
False equivalencies: Online activism from left to right.
Science. 2020 Sep 4;369(6508):1197-1201. doi: 10.1126/science.abb2428.
6
Divergent discourse between protests and counter-protests: #BlackLivesMatter and #AllLivesMatter.
PLoS One. 2018 Apr 18;13(4):e0195644. doi: 10.1371/journal.pone.0195644. eCollection 2018.
7
Social Media Participation in an Activist Movement for Racial Equality.
Proc Int AAAI Conf Weblogs Soc Media. 2016 May;2016:92-101.
8
Retweets as a Predictor of Relationships among Users on Social Media.
PLoS One. 2017 Jan 20;12(1):e0170279. doi: 10.1371/journal.pone.0170279. eCollection 2017.
9
Political ideology: its structure, functions, and elective affinities.
Annu Rev Psychol. 2009;60:307-37. doi: 10.1146/annurev.psych.60.110707.163600.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验