Gindt Mélanie E, Lück Rebecca, Deppenmeier Uwe
Institute of Microbiology and Biotechnology, University of Bonn, Meckenheimer Allee 168, 53115, Bonn, Germany.
Appl Microbiol Biotechnol. 2024 Sep 16;108(1):465. doi: 10.1007/s00253-024-13303-2.
The demand for sustainably produced bulk chemicals is constantly rising. Succinate serves as a fundamental component in various food, chemical, and pharmaceutical products. Succinate can be produced from sustainable raw materials using microbial fermentation and enzyme-based technologies. Bacteroides and Phocaeicola species, widely distributed and prevalent gut commensals, possess enzyme sets for the metabolization of complex plant polysaccharides and synthesize succinate as a fermentative end product. This study employed novel molecular techniques to enhance succinate yields in the natural succinate producer Phocaeicola vulgatus by directing the metabolic carbon flow toward succinate formation. The deletion of the gene encoding the methylmalonyl-CoA mutase (Δmcm, bvu_0309-0310) resulted in a 95% increase in succinate production, as metabolization to propionate was effectively blocked. Furthermore, deletion of genes encoding the lactate dehydrogenase (Δldh, bvu_2499) and the pyruvate:formate lyase (Δpfl, bvu_2880) eliminated the formation of fermentative end products lactate and formate. By overproducing the transketolase (TKT, BVU_2318) in the triple deletion mutant, succinate production increased from 3.9 mmol/g dry weight in the wild type to 10.9 mmol/g dry weight. Overall, succinate yield increased by 180% in the new mutant strain P. vulgatus Δmcm Δldh Δpfl pG106_tkt relative to the parent strain. This approach is a proof of concept, verifying the genetic accessibility of P. vulgatus, and forms the basis for targeted genetic optimization. The increase of efficiency highlights the huge potential of P. vulgatus as a succinate producer with applications in sustainable bioproduction processes. KEY POINTS: • Deleting methylmalonyl-CoA mutase gene in P. vulgatus doubled succinate production • Triple deletion mutant with transketolase overexpression increased succinate yield by 180% • P. vulgatus shows high potential for sustainable bulk chemical production via genetic optimization.
对可持续生产的大宗化学品的需求在不断上升。琥珀酸是各种食品、化学品和药品中的基本成分。琥珀酸可以使用微生物发酵和基于酶的技术从可持续原材料中生产出来。拟杆菌属和福卡埃icola属是广泛分布且普遍存在的肠道共生菌,拥有代谢复杂植物多糖的酶系,并将琥珀酸合成为发酵终产物。本研究采用新型分子技术,通过引导代谢碳流朝着琥珀酸形成的方向,提高天然琥珀酸生产者普通福卡埃icola中琥珀酸的产量。编码甲基丙二酰辅酶A变位酶(Δmcm,bvu_0309 - 0310)的基因缺失导致琥珀酸产量增加95%,因为向丙酸盐的代谢有效地被阻断。此外,编码乳酸脱氢酶(Δldh,bvu_2499)和丙酮酸:甲酸裂解酶(Δpfl,bvu_2880)的基因缺失消除了发酵终产物乳酸和甲酸的形成。通过在三重缺失突变体中过量表达转酮醇酶(TKT,BVU_2318),琥珀酸产量从野生型的3.9 mmol/g干重增加到10.9 mmol/g干重。总体而言,新的突变菌株普通福卡埃icola Δmcm Δldh Δpfl pG106_tkt的琥珀酸产量相对于亲本菌株增加了180%。这种方法是一种概念验证,验证了普通福卡埃icola的遗传可操作性,并为靶向基因优化奠定了基础。效率的提高突出了普通福卡埃icola作为琥珀酸生产者在可持续生物生产过程中的巨大潜力。要点:• 在普通福卡埃icola中删除甲基丙二酰辅酶A变位酶基因使琥珀酸产量翻倍 • 过表达转酮醇酶的三重缺失突变体使琥珀酸产量提高了180% • 通过基因优化,普通福卡埃icola在可持续大宗化学品生产方面具有很高的潜力