纳米药物在脊髓损伤与修复中的转化。

The Translation of Nanomedicines in the Contexts of Spinal Cord Injury and Repair.

机构信息

School of Chemical Engineering, University of New South Wales (UNSW), Kensington, NSW 2052, Australia.

Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia.

出版信息

Cells. 2024 Mar 24;13(7):569. doi: 10.3390/cells13070569.

Abstract

PURPOSE OF THIS REVIEW

Manipulating or re-engineering the damaged human spinal cord to achieve neuro-recovery is one of the foremost challenges of modern science. Addressing the restricted permission of neural cells and topographically organised neural tissue for self-renewal and spontaneous regeneration, respectively, is not straightforward, as exemplified by rare instances of translational success. This review assembles an understanding of advances in nanomedicine for spinal cord injury (SCI) and related clinical indications of relevance to attempts to design, engineer, and target nanotechnologies to multiple molecular networks.

RECENT FINDINGS

Recent research provides a new understanding of the health benefits and regulatory landscape of nanomedicines based on a background of advances in mRNA-based nanocarrier vaccines and quantum dot-based optical imaging. In relation to spinal cord pathology, the extant literature details promising advances in nanoneuropharmacology and regenerative medicine that inform the present understanding of the nanoparticle (NP) biocompatibility-neurotoxicity relationship. In this review, the conceptual bases of nanotechnology and nanomaterial chemistry covering organic and inorganic particles of sizes generally less than 100 nm in diameter will be addressed. Regarding the centrally active nanotechnologies selected for this review, attention is paid to NP physico-chemistry, functionalisation, delivery, biocompatibility, biodistribution, toxicology, and key molecular targets and biological effects intrinsic to and beyond the spinal cord parenchyma.

SUMMARY

The advance of nanotechnologies for the treatment of refractory spinal cord pathologies requires an in-depth understanding of neurobiological and topographical principles and a consideration of additional complexities involving the research's translational and regulatory landscapes.

摘要

本综述的目的

对受损的人体脊髓进行操控或重新设计以实现神经恢复,这是现代科学面临的首要挑战之一。分别解决神经细胞和组织的再生受限问题,即神经细胞的再生受限和组织的拓扑组织的再生受限,并非易事,因为很少有转化成功的例子。本综述汇集了对脊髓损伤 (SCI) 的纳米医学进展的理解,以及与尝试设计、工程和靶向纳米技术到多个分子网络相关的相关临床适应症。

最近的发现

最近的研究提供了对纳米医学的健康益处和监管格局的新理解,这是基于 mRNA 纳米载体疫苗和量子点光学成像方面的进展。就脊髓病理学而言,现有文献详细介绍了纳米神经药理学和再生医学方面的有希望的进展,这些进展为目前对纳米颗粒 (NP) 的生物相容性-神经毒性关系的理解提供了信息。在本综述中,将涉及纳米技术和纳米材料化学的概念基础,涵盖通常直径小于 100nm 的有机和无机颗粒。关于为本综述选择的中枢活性纳米技术,关注的是 NP 的物理化学、功能化、传递、生物相容性、生物分布、毒理学以及固有和超越脊髓实质的关键分子靶点和生物学效应。

总结

为治疗难治性脊髓病理而开发的纳米技术需要深入了解神经生物学和拓扑学原理,并考虑涉及研究转化和监管格局的其他复杂性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索