Suppr超能文献

LightGBM 在预测肝移植后移植物失功方面优于其他机器学习技术:通过大规模分析创建预测模型。

LightGBM outperforms other machine learning techniques in predicting graft failure after liver transplantation: Creation of a predictive model through large-scale analysis.

机构信息

Graduate School of Medicine, Kyoto University, Kyoto, Japan.

Department of Transplant Surgery, Mita Hospital, International University of Health and Welfare, Tokyo, Japan.

出版信息

Clin Transplant. 2024 Apr;38(4):e15316. doi: 10.1111/ctr.15316.

Abstract

BACKGROUND

The incidence of graft failure following liver transplantation (LTx) is consistent. While traditional risk scores for LTx have limited accuracy, the potential of machine learning (ML) in this area remains uncertain, despite its promise in other transplant domains. This study aims to determine ML's predictive limitations in LTx by replicating methods used in previous heart transplant research.

METHODS

This study utilized the UNOS STAR database, selecting 64,384 adult patients who underwent LTx between 2010 and 2020. Gradient boosting models (XGBoost and LightGBM) were used to predict 14, 30, and 90-day graft failure compared to conventional logistic regression model. Models were evaluated using both shuffled and rolling cross-validation (CV) methodologies. Model performance was assessed using the AUC across validation iterations.

RESULTS

In a study comparing predictive models for 14-day, 30-day and 90-day graft survival, LightGBM consistently outperformed other models, achieving the highest AUC of.740,.722, and.700 in shuffled CV methods. However, in rolling CV the accuracy of the model declined across every ML algorithm. The analysis revealed influential factors for graft survival prediction across all models, including total bilirubin, medical condition, recipient age, and donor AST, among others. Several features like donor age and recipient diabetes history were important in two out of three models.

CONCLUSIONS

LightGBM enhances short-term graft survival predictions post-LTx. However, due to changing medical practices and selection criteria, continuous model evaluation is essential. Future studies should focus on temporal variations, clinical implications, and ensure model transparency for broader medical utility.

摘要

背景

肝移植(LTx)后移植物失功的发生率是一致的。虽然传统的 LTx 风险评分准确性有限,但机器学习(ML)在这一领域的潜力仍不确定,尽管它在其他移植领域有很大的应用前景。本研究旨在通过复制先前心脏移植研究中使用的方法,确定 ML 在 LTx 中的预测局限性。

方法

本研究利用 UNOS STAR 数据库,选择了 2010 年至 2020 年间接受 LTx 的 64384 名成年患者。梯度提升模型(XGBoost 和 LightGBM)用于预测 14 天、30 天和 90 天的移植物失功,与传统的逻辑回归模型进行比较。使用洗牌和滚动交叉验证(CV)方法评估模型。使用验证迭代过程中的 AUC 评估模型性能。

结果

在一项比较预测 14 天、30 天和 90 天移植物存活的模型的研究中,LightGBM 始终优于其他模型,在洗牌 CV 方法中获得了最高的 AUC 值,分别为 0.740、0.722 和 0.700。然而,在滚动 CV 中,每个 ML 算法的准确性都在下降。分析结果表明,所有模型中对移植物存活预测有影响的因素包括总胆红素、医疗状况、受体年龄和供体 AST 等。一些特征,如供体年龄和受体糖尿病史,在三个模型中的两个中是重要的。

结论

LightGBM 提高了 LTx 后短期移植物存活的预测。然而,由于医疗实践和选择标准的不断变化,需要对模型进行持续评估。未来的研究应关注时间变化、临床意义,并确保模型透明度,以实现更广泛的医疗应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验