Suppr超能文献

心脏电生理学的数字孪生:现状与未来挑战。

Digital twins for cardiac electrophysiology: state of the art and future challenges.

机构信息

Department of Cardiology, Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine, and Life Sciences, Maastricht University, Maastricht, The Netherlands.

Gottfried Schatz Research Center, Division of Medical Physics & Biophysics, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria.

出版信息

Herzschrittmacherther Elektrophysiol. 2024 Jun;35(2):118-123. doi: 10.1007/s00399-024-01014-0. Epub 2024 Apr 12.

Abstract

Cardiac arrhythmias remain a major cause of death and disability. Current antiarrhythmic therapies are effective to only a limited extent, likely in large part due to their mechanism-independent approach. Precision cardiology aims to deliver targeted therapy for an individual patient to maximize efficacy and minimize adverse effects. In-silico digital twins have emerged as a promising strategy to realize the vision of precision cardiology. While there is no uniform definition of a digital twin, it typically employs digital tools, including simulations of mechanistic computer models, based on patient-specific clinical data to understand arrhythmia mechanisms and/or make clinically relevant predictions. Digital twins have become part of routine clinical practice in the setting of interventional cardiology, where commercially available services use digital twins to non-invasively determine the severity of stenosis (computed tomography-based fractional flow reserve). Although routine clinical application has not been achieved for cardiac arrhythmia management, significant progress towards digital twins for cardiac electrophysiology has been made in recent years. At the same time, significant technical and clinical challenges remain. This article provides a short overview of the history of digital twins for cardiac electrophysiology, including recent applications for the prediction of sudden cardiac death risk and the tailoring of rhythm control in atrial fibrillation. The authors highlight the current challenges for routine clinical application and discuss how overcoming these challenges may allow digital twins to enable a significant precision medicine-based advancement in cardiac arrhythmia management.

摘要

心律失常仍然是死亡和残疾的主要原因。目前的抗心律失常疗法的效果有限,这在很大程度上可能是由于它们的非机制依赖性方法。精准心脏病学旨在为个体患者提供靶向治疗,以最大限度地提高疗效并最小化不良反应。基于计算机的数字孪生体已成为实现精准心脏病学愿景的一种很有前途的策略。虽然数字孪生体没有统一的定义,但它通常采用数字工具,包括基于患者特定临床数据的机制计算机模型模拟,以了解心律失常机制和/或做出临床相关预测。数字孪生体已成为介入心脏病学常规临床实践的一部分,其中商业上可用的服务使用数字孪生体来无创地确定狭窄的严重程度(基于计算机断层扫描的血流储备分数)。尽管数字孪生体尚未在心律失常管理中常规应用,但近年来在心脏电生理学的数字孪生体方面已取得重大进展。与此同时,仍然存在重大的技术和临床挑战。本文简要概述了心脏电生理学数字孪生体的历史,包括最近用于预测心源性猝死风险和调整心房颤动节律控制的应用。作者强调了常规临床应用的当前挑战,并讨论了如何克服这些挑战,以使数字孪生体能够在心律失常管理方面实现基于精准医学的重大进展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c81d/11161534/45b94bdc7c3a/399_2024_1014_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验