Suppr超能文献

2020年经济危机期间及之后的新技术、潜在失业与“无知经济”

New technologies, potential unemployment and 'nescience economy' during and after the 2020 economic crisis.

作者信息

Zemtsov Stepan

机构信息

The Russian Presidential Academy of National Economy and Public Administration; Russian Foreign Trade Academy Russia.

出版信息

Reg Sci Policy Prac. 2020 Aug;12(4):723-743. doi: 10.1111/rsp3.12286. Epub 2020 May 22.

Abstract

The coronavirus pandemic and the economic crisis in 2020 are accelerating digital transformation. During and after the crisis, there are opportunities and needs for remote work facilities, online services, delivery drones, etc. We discuss how unmanned technologies can cause a long-term employment decrease, and why compensation mechanisms may not work. Using the internationally comparable Frey-Osborne methodology, we estimated that less than a third of employees in Russia work in professions with a high automation probability. Some of these professions can suffer the most during quarantine measures; employment in traditional services can be significantly reduced. By 2030, about half of the jobs in the world and a little less in Russia will need to adapt during the fourth industrial revolution because they are engaged in routine, potentially automated activities. In the regions, specializing in manufacturing, this value is higher; the lowest risk is in the largest agglomerations with a high share of digital economy, greater and diverse labour markets. Accelerating technological change can lead to a long-term mismatch between the exponential increase in automation rate and compensating effects of retraining, new jobs creation and other labour market adaptation mechanisms. Some people will not be ready for a life-long learning and competition with robots, and accordingly there is a possibility of their technological exclusion. The term "nescience economy" and corresponding assessment method were proposed. Using an econometric model, we identified factors that reduce these risks: human capital concentration, favourable business climate, high quality of life and ICT development. Based on these factors, some recommendations for authorities were proposed in the conclusion.

摘要

2020年的新冠疫情大流行和经济危机正在加速数字转型。在危机期间及之后,对远程工作设施、在线服务、送货无人机等存在机遇和需求。我们讨论了无人技术如何导致长期就业减少,以及为何补偿机制可能不起作用。使用国际可比的弗雷-奥斯本方法,我们估计俄罗斯从事自动化概率高的职业的员工不到三分之一。其中一些职业在检疫措施期间可能受影响最大;传统服务业的就业可能会大幅减少。到2030年,由于从事常规的、可能被自动化的活动,世界上约一半的工作岗位以及俄罗斯略少一些的工作岗位将需要在第四次工业革命期间进行调整。在专门从事制造业的地区,这一比例更高;风险最低的是数字经济份额高、劳动力市场更大且多样的最大城市群。加速的技术变革可能导致自动化率呈指数增长与再培训、创造新就业机会及其他劳动力市场适应机制的补偿效应之间长期不匹配。一些人将无法为终身学习和与机器人竞争做好准备,因此有可能被技术排斥。我们提出了“无知经济”这一术语及相应的评估方法。使用计量经济模型,我们确定了降低这些风险的因素:人力资本集中、良好的商业环境、高质量的生活和信息通信技术发展。基于这些因素,结论中向当局提出了一些建议。

相似文献

1
New technologies, potential unemployment and 'nescience economy' during and after the 2020 economic crisis.
Reg Sci Policy Prac. 2020 Aug;12(4):723-743. doi: 10.1111/rsp3.12286. Epub 2020 May 22.
2
Forcing the Digital Economy: How will the Structure of Digital Markets Change as a Result of the COVID-19 Pandemic.
Stud Russ Econ Dev. 2021;32(1):11-22. doi: 10.1134/S1075700721010056. Epub 2021 Feb 19.
3
The Minderoo-Monaco Commission on Plastics and Human Health.
Ann Glob Health. 2023 Mar 21;89(1):23. doi: 10.5334/aogh.4056. eCollection 2023.
4
The Russian Economy under the Impact of the Pandemic Crisis.
Her Russ Acad Sci. 2022;92(4):536-543. doi: 10.1134/S1019331622040232. Epub 2022 Sep 6.
5
Australia in 2030: what is our path to health for all?
Med J Aust. 2021 May;214 Suppl 8:S5-S40. doi: 10.5694/mja2.51020.
6
Digital divide, skills and perceptions on digitalisation in the European Union-Towards a smart labour market.
PLoS One. 2020 Apr 23;15(4):e0232032. doi: 10.1371/journal.pone.0232032. eCollection 2020.
7
[The evolution of employment in Mexico: 1895-1980].
Estud Demogr Urbanos Col Mex. 1987 May-Aug;2(2):189-230, 381.
8
9
The Impact of the COVID Crisis on the Innovative Potential of China's Internet Platforms.
Her Russ Acad Sci. 2020;90(6):779-788. doi: 10.1134/S1019331620060271. Epub 2021 Jan 21.
10
Prospects for European labour demand.
Eur J Popul. 1988 Jul;3(3-4):383-410. doi: 10.1007/BF01796906.

引用本文的文献

1
Assessing economic implications for micro, small and medium enterprises in Thailand post Covid-19 lockdown.
PLoS One. 2024 Feb 13;19(2):e0294890. doi: 10.1371/journal.pone.0294890. eCollection 2024.
2
Teachers' views on the effect of STEM education on the labor market.
Front Psychol. 2023 Jun 12;14:1184730. doi: 10.3389/fpsyg.2023.1184730. eCollection 2023.
3
An empirical analysis of the impact of higher education on economic growth: The case of China.
Front Psychol. 2022 Aug 18;13:959026. doi: 10.3389/fpsyg.2022.959026. eCollection 2022.
4
COVID-19 pandemic accelerates the perception of digital transformation on real estate websites.
Qual Quant. 2023;57(3):2165-2181. doi: 10.1007/s11135-022-01449-y. Epub 2022 Jun 21.
6
A literature survey of the robotic technologies during the COVID-19 pandemic.
J Manuf Syst. 2021 Jul;60:823-836. doi: 10.1016/j.jmsy.2021.02.005. Epub 2021 Feb 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验