Suppr超能文献

通过姿态估计实现快速高效的根系表型分析。

Fast and Efficient Root Phenotyping via Pose Estimation.

作者信息

Berrigan Elizabeth M, Wang Lin, Carrillo Hannah, Echegoyen Kimberly, Kappes Mikayla, Torres Jorge, Ai-Perreira Angel, McCoy Erica, Shane Emily, Copeland Charles D, Ragel Lauren, Georgousakis Charidimos, Lee Sanghwa, Reynolds Dawn, Talgo Avery, Gonzalez Juan, Zhang Ling, Rajurkar Ashish B, Ruiz Michel, Daniels Erin, Maree Liezl, Pariyar Shree, Busch Wolfgang, Pereira Talmo D

机构信息

Salk Institute for Biological Studies, La Jolla, CA 92037, USA.

出版信息

Plant Phenomics. 2024 Apr 12;6:0175. doi: 10.34133/plantphenomics.0175. eCollection 2024.

Abstract

Image segmentation is commonly used to estimate the location and shape of plants and their external structures. Segmentation masks are then used to localize landmarks of interest and compute other geometric features that correspond to the plant's phenotype. Despite its prevalence, segmentation-based approaches are laborious (requiring extensive annotation to train) and error-prone (derived geometric features are sensitive to instance mask integrity). Here, we present a segmentation-free approach that leverages deep learning-based landmark detection and grouping, also known as pose estimation. We use a tool originally developed for animal motion capture called SLEAP (Social LEAP Estimates Animal Poses) to automate the detection of distinct morphological landmarks on plant roots. Using a gel cylinder imaging system across multiple species, we show that our approach can reliably and efficiently recover root system topology at high accuracy, few annotated samples, and faster speed than segmentation-based approaches. In order to make use of this landmark-based representation for root phenotyping, we developed a Python library () for trait extraction directly comparable to existing segmentation-based analysis software. We show that pose-derived root traits are highly accurate and can be used for common downstream tasks including genotype classification and unsupervised trait mapping. Altogether, this work establishes the validity and advantages of pose estimation-based plant phenotyping. To facilitate adoption of this easy-to-use tool and to encourage further development, we make , all training data, models, and trait extraction code available at: https://github.com/talmolab/sleap-roots and https://osf.io/k7j9g/.

摘要

图像分割通常用于估计植物及其外部结构的位置和形状。然后,分割掩码用于定位感兴趣的地标并计算与植物表型相对应的其他几何特征。尽管其应用广泛,但基于分割的方法费力(需要大量注释来训练)且容易出错(导出的几何特征对实例掩码完整性敏感)。在这里,我们提出了一种无分割方法,该方法利用基于深度学习的地标检测和分组,也称为姿态估计。我们使用一种最初为动物运动捕捉开发的工具,称为SLEAP(社交姿态估计动物姿态),来自动检测植物根系上不同的形态地标。通过使用跨多个物种的凝胶柱成像系统,我们表明我们的方法能够以高精度、少量注释样本且比基于分割的方法更快的速度可靠且高效地恢复根系拓扑结构。为了将这种基于地标的表示用于根系表型分析,我们开发了一个Python库()用于特征提取,可直接与现有的基于分割的分析软件进行比较。我们表明,姿态衍生的根系特征高度准确,可用于常见的下游任务,包括基因型分类和无监督特征映射。总之,这项工作确立了基于姿态估计的植物表型分析的有效性和优势。为了便于采用这个易于使用的工具并鼓励进一步开发,我们将 、所有训练数据、模型和特征提取代码发布在:https://github.com/talmolab/sleap-rootshttps://osf.io/k7j9g/

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc40/11020144/d661c2aa01a6/plantphenomics.0175.fig.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验