Danish Research Institute of Translational Neuroscience (DANDRITE), Aarhus University, Ole Worms Alle 3, Building 1170, 8000 Aarhus C, Denmark.
Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA 91125, USA.
Curr Biol. 2018 Sep 10;28(17):2705-2717.e4. doi: 10.1016/j.cub.2018.06.038. Epub 2018 Aug 23.
Multifunctional motor systems produce distinct output patterns that are dependent on behavioral context, posing a challenge to underlying neuronal control. Flies use their wings for flight and the production of a patterned acoustic signal, the male courtship song, employing in both cases a small set of wing muscles and corresponding motor neurons. We took first steps toward elucidating the neuronal control mechanisms of this multifunctional motor system by live imaging of muscle ensemble activity patterns during song and flight, and we established the functional role of a comprehensive set of wing muscle motor neurons by silencing experiments. Song and flight rely on distinct configurations of neuromuscular activity, with most, but not all, flight muscles and their corresponding motor neurons contributing to song and shaping its acoustic parameters. The two behaviors are exclusive, and the neuronal command for flight overrides the command for song. The neuromodulator octopamine is a candidate for selectively stabilizing flight, but not song motor patterns.
多功能运动系统产生依赖于行为背景的独特输出模式,这对其潜在的神经元控制构成了挑战。苍蝇用它们的翅膀来飞行和产生有模式的声学信号,即雄性求爱歌曲,在这两种情况下都使用一小部分翅膀肌肉和相应的运动神经元。我们通过在歌曲和飞行过程中对肌肉整体活动模式进行实时成像,朝着阐明这个多功能运动系统的神经元控制机制迈出了第一步,并通过沉默实验确定了一组全面的翅膀肌肉运动神经元的功能作用。歌曲和飞行依赖于不同的神经肌肉活动配置,大多数(但不是全部)飞行肌肉及其相应的运动神经元都参与了歌曲的产生,并塑造了其声学参数。这两种行为是相互排斥的,飞行的神经指令会覆盖歌曲的指令。神经调质章鱼胺可能是选择性稳定飞行而不是歌曲运动模式的候选物质。