Suppr超能文献

用于新辅助治疗后病理肿瘤反应评估的可解释深度学习模型的开发

Development of an Interpretable Deep Learning Model for Pathological Tumor Response Assessment After Neoadjuvant Therapy.

作者信息

Wang Yichen, Zhang Wenhua, Chen Lijun, Xie Jun, Zheng Xuebin, Jin Yan, Zheng Qiang, Xue Qianqian, Li Bin, He Chuan, Chen Haiquan, Li Yuan

机构信息

Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China, 200032.

Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China, 200032.

出版信息

Biol Proced Online. 2024 Apr 17;26(1):10. doi: 10.1186/s12575-024-00234-5.

Abstract

BACKGROUND

Neoadjuvant therapy followed by surgery has become the standard of care for locally advanced esophageal squamous cell carcinoma (ESCC) and accurate pathological response assessment is critical to assess the therapeutic efficacy. However, it can be laborious and inconsistency between different observers may occur. Hence, we aim to develop an interpretable deep-learning model for efficient pathological response assessment following neoadjuvant therapy in ESCC.

METHODS

This retrospective study analyzed 337 ESCC resection specimens from 2020-2021 at the Pudong-Branch (Cohort 1) and 114 from 2021-2022 at the Puxi-Branch (External Cohort 2) of Fudan University Shanghai Cancer Center. Whole slide images (WSIs) from these two cohorts were generated using different scanning machines to test the ability of the model in handling color variations. Four pathologists independently assessed the pathological response. The senior pathologists annotated tumor beds and residual tumor percentages on WSIs to determine consensus labels. Furthermore, 1850 image patches were randomly extracted from Cohort 1 WSIs and binarily classified for tumor viability. A deep-learning model employing knowledge distillation was developed to automatically classify positive patches for each WSI and estimate the viable residual tumor percentages. Spatial heatmaps were output for model explanations and visualizations.

RESULTS

The approach achieved high concordance with pathologist consensus, with an R^2 of 0.8437, a RAcc_0.1 of 0.7586, a RAcc_0.3 of 0.9885, which were comparable to two senior pathologists (R^2 of 0.9202/0.9619, RAcc_0.1 of 8506/0.9425, RAcc_0.3 of 1.000/1.000) and surpassing two junior pathologists (R^2 of 0.5592/0.5474, RAcc_0.1 of 0.5287/0.5287, RAcc_0.3 of 0.9080/0.9310). Visualizations enabled the localization of residual viable tumor to augment microscopic assessment.

CONCLUSION

This work illustrates deep learning's potential for assisting pathological response assessment. Spatial heatmaps and patch examples provide intuitive explanations of model predictions, engendering clinical trust and adoption (Code and data will be available at https://github.com/WinnieLaugh/ESCC_Percentage once the paper has been conditionally accepted). Integrating interpretable computational pathology could help enhance the efficiency and consistency of tumor response assessment and empower precise oncology treatment decisions.

摘要

背景

新辅助治疗后进行手术已成为局部晚期食管鳞状细胞癌(ESCC)的标准治疗方案,准确的病理反应评估对于评估治疗效果至关重要。然而,这可能很费力,并且不同观察者之间可能会出现不一致。因此,我们旨在开发一种可解释的深度学习模型,用于在ESCC新辅助治疗后进行高效的病理反应评估。

方法

这项回顾性研究分析了复旦大学附属肿瘤医院浦东院区2020 - 2021年的337例ESCC切除标本(队列1)以及浦西院区2021 - 2022年的114例标本(外部队列2)。使用不同的扫描机器生成这两个队列的全切片图像(WSIs),以测试模型处理颜色变化的能力。四位病理学家独立评估病理反应。资深病理学家在WSIs上标注肿瘤床和残余肿瘤百分比,以确定一致的标签。此外,从队列1的WSIs中随机提取1850个图像块,并对肿瘤活性进行二元分类。开发了一种采用知识蒸馏的深度学习模型,以自动对每个WSI的阳性块进行分类,并估计存活的残余肿瘤百分比。输出空间热图用于模型解释和可视化。

结果

该方法与病理学家的共识高度一致,R^2为0.8437,RAcc_0.1为0.7586,RAcc_0.3为0.9885,与两位资深病理学家相当(R^2为0.9202/0.9619,RAcc_0.1为0.8506/0.9425,RAcc_0.3为1.000/1.000),并超过两位初级病理学家(R^2为0.5592/0.5474,RAcc_0.1为0.5287/0.5287,RAcc_0.3为0.9080/0.9310)。可视化能够定位存活的残余肿瘤,以加强显微镜评估。

结论

这项工作说明了深度学习在辅助病理反应评估方面的潜力。空间热图和图像块示例为模型预测提供了直观的解释,增强了临床信任和采用度(一旦论文被有条件接受,代码和数据将在https://github.com/WinnieLaugh/ESCC_Percentage上提供)。整合可解释的计算病理学有助于提高肿瘤反应评估的效率和一致性,并为精准肿瘤治疗决策提供支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12e8/11022344/b5fb1452acc0/12575_2024_234_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验