Suppr超能文献

设计癌症诊断的深度学习研究。

Designing deep learning studies in cancer diagnostics.

机构信息

Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo, Norway.

Department of Informatics, University of Oslo, Oslo, Norway.

出版信息

Nat Rev Cancer. 2021 Mar;21(3):199-211. doi: 10.1038/s41568-020-00327-9. Epub 2021 Jan 29.

Abstract

The number of publications on deep learning for cancer diagnostics is rapidly increasing, and systems are frequently claimed to perform comparable with or better than clinicians. However, few systems have yet demonstrated real-world medical utility. In this Perspective, we discuss reasons for the moderate progress and describe remedies designed to facilitate transition to the clinic. Recent, presumably influential, deep learning studies in cancer diagnostics, of which the vast majority used images as input to the system, are evaluated to reveal the status of the field. By manipulating real data, we then exemplify that much and varied training data facilitate the generalizability of neural networks and thus the ability to use them clinically. To reduce the risk of biased performance estimation of deep learning systems, we advocate evaluation in external cohorts and strongly advise that the planned analyses, including a predefined primary analysis, are described in a protocol preferentially stored in an online repository. Recommended protocol items should be established for the field, and we present our suggestions.

摘要

深度学习在癌症诊断方面的研究文献数量正在迅速增加,并且经常有系统声称其性能可与临床医生相媲美或优于临床医生。然而,很少有系统已经证明具有实际的医学应用价值。在本观点文章中,我们讨论了进展较为缓慢的原因,并描述了旨在促进向临床过渡的补救措施。最近,癌症诊断中深度学习的研究数量可能有所增加,其中绝大多数系统使用图像作为系统输入,我们对这些研究进行了评估,以揭示该领域的现状。通过操纵真实数据,我们举例说明了大量和多样化的训练数据有助于神经网络的泛化能力,从而提高了将其用于临床的能力。为了降低深度学习系统性能评估出现偏差的风险,我们提倡在外部队列中进行评估,并强烈建议在方案中描述计划的分析,包括预定义的主要分析,优选地将方案存储在在线存储库中。应针对该领域制定推荐的方案项目,我们提出了自己的建议。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验