Suppr超能文献

探索个体对英国国民医疗服务体系检测与追踪系统的公众信任——一项务实的反思性主题分析。

Exploring individual's public trust in the NHS Test and Trace System - A pragmatic reflexive thematic analysis.

作者信息

Babbage C M, Wagner H, Dowthwaite L, Portillo V, Perez E, Fischer J

机构信息

NIHR HealthTech Research Centre in Mental Heath (MindTech), School of Medicine, University of Nottingham, Nottingham, United Kingdom.

School of Computing, Engineering & the Built Environment, Edinburgh Napier University, Edinburgh, United Kingdom.

出版信息

Internet Interv. 2024 Apr 4;36:100740. doi: 10.1016/j.invent.2024.100740. eCollection 2024 Jun.

Abstract

CONTEXT

Digital contact tracing uses automated systems and location technology embedded on smartphone software for efficient identification of individuals exposed to COVID-19. Such systems are only effective with high compliance, yet compliance is mediated by public trust in the system. This work explored the perception of individual's trust and expectation of the broader Test and Trace system in the United Kingdom (UK) with the upcoming release of the National Health Service's (NHS) COVID-19 app as a case example.

METHODS

Twelve adults underwent online semi-structured interviews in August 2020, prior to public availability of the COVID-19 app. Pragmatic reflexive thematic analysis was applied inductively to explore common themes between participants, using an organic and recursive process (Braun & Clarke, 2019).

RESULTS

Themes highlighted features of the technology that would be perceived to be trustworthy (Theme 1), and concerns relating to i) whether users would comply with a T&T system (Theme 2) and ii) how a T&T system would handle user's personal data (Theme 3). Two further themes built on aspects of automation within a T&T system and its impact on trust (Theme 4) and how the media altered perceptions of the T&T system (Theme 5).

CONCLUSIONS

Participants outlined the need for different user requirements that could be built into the NHS COVID-19 app that would support increased adherence. Concurrently, participants raised questions surrounding personal data and privacy of their data, plus the level of automated versus manual tasks, which impacted perception of trust in the app and wider system. Additionally, themes highlighted that T&T systems do not happen within a vacuum, but within a pre-existing environment influenced by variables such as the media and perception of other's compliance to T&T.

IMPLICATIONS

Since it's roll-out, controversies surrounding the UK T&T system include concerns about privacy, stigma and uptake. Considering the current piece of work, which anticipated similar concerns prior to public access to COVID-19 app, engaging with the public may have been an important step in improving the perception and compliance with the app. Principles fundamental to patient and public involvement (PPI) and Responsible Research and Innovation (RRI) such as the inclusion of the public in the early development of research and aligning the outcomes of research and innovation with broader societal values and expectations would have been well-applied to this system and should be applied to future autonomous systems requiring high public uptake.

摘要

背景

数字接触者追踪利用嵌入智能手机软件的自动化系统和定位技术,以高效识别接触过新冠病毒的个体。此类系统只有在高合规率的情况下才有效,而合规率又受到公众对该系统信任度的影响。这项研究以上述即将发布的英国国家医疗服务体系(NHS)新冠病毒应用程序为例,探讨了英国民众对更广泛的检测与追踪系统的信任和期望。

方法

在2020年8月新冠病毒应用程序向公众开放之前,12名成年人接受了在线半结构化访谈。采用务实反思主题分析法,通过有机且递归的过程(布劳恩和克拉克,2019),归纳探索参与者之间的共同主题。

结果

主题突出了被认为值得信赖的技术特征(主题1),以及与以下两方面相关的担忧:一是用户是否会遵守检测与追踪系统(主题2),二是检测与追踪系统将如何处理用户的个人数据(主题3)。另外两个主题基于检测与追踪系统中的自动化方面及其对信任的影响(主题4),以及媒体如何改变对检测与追踪系统的看法(主题5)。

结论

参与者概述了在NHS新冠病毒应用程序中纳入不同用户需求的必要性,这些需求有助于提高用户的依从性。同时,参与者提出了有关个人数据及其隐私、自动化任务与人工任务水平等问题,这些问题影响了对应用程序及更广泛系统的信任度。此外,主题还强调检测与追踪系统并非在真空中运行,而是在一个受媒体以及对他人遵守检测与追踪情况的看法等变量影响的现有环境中运行。

启示

自推出以来,围绕英国检测与追踪系统的争议包括对隐私、污名化和使用率的担忧。鉴于当前这项研究在新冠病毒应用程序向公众开放之前就预见到了类似担忧,与公众互动可能是提高对该应用程序的认知度和依从性的重要一步。诸如让公众参与研究早期开发、使研究与创新成果与更广泛的社会价值观和期望保持一致等患者和公众参与(PPI)以及负责任的研究与创新(RRI)的基本原则,本可很好地应用于该系统,也应应用于未来需要公众高度接受的自主系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aad2/11021953/220e48278bde/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验