Suppr超能文献

缺失环境变量的统计抽样提高了小麦的生物物理基因组预测。

Statistical sampling of missing environmental variables improves biophysical genomic prediction in wheat.

机构信息

AgriBio, Centre for AgriBiosciences, Agriculture Victoria, Bundoora, VIC, 3083, Australia.

SuSTATability Statistical Solutions, Melbourne, VIC, 3081, Australia.

出版信息

Theor Appl Genet. 2024 Apr 18;137(5):108. doi: 10.1007/s00122-024-04613-0.

Abstract

The integration of genomic prediction with crop growth models enabled the estimation of missing environmental variables which improved the prediction accuracy of grain yield. Since the invention of whole-genome prediction (WGP) more than two decades ago, breeding programmes have established extensive reference populations that are cultivated under diverse environmental conditions. The introduction of the CGM-WGP model, which integrates crop growth models (CGM) with WGP, has expanded the applications of WGP to the prediction of unphenotyped traits in untested environments, including future climates. However, CGMs require multiple seasonal environmental records, unlike WGP, which makes CGM-WGP less accurate when applied to historical reference populations that lack crucial environmental inputs. Here, we investigated the ability of CGM-WGP to approximate missing environmental variables to improve prediction accuracy. Two environmental variables in a wheat CGM, initial soil water content (InitlSoilWCont) and initial nitrate profile, were sampled from different normal distributions separately or jointly in each iteration within the CGM-WGP algorithm. Our results showed that sampling InitlSoilWCont alone gave the best results and improved the prediction accuracy of grain number by 0.07, yield by 0.06 and protein content by 0.03. When using the sampled InitlSoilWCont values as an input for the traditional CGM, the average narrow-sense heritability of the genotype-specific parameters (GSPs) improved by 0.05, with GNSlope, PreAnthRes, and VernSen showing the greatest improvements. Moreover, the root mean square of errors for grain number and yield was reduced by about 7% for CGM and 31% for CGM-WGP when using the sampled InitlSoilWCont values. Our results demonstrate the advantage of sampling missing environmental variables in CGM-WGP to improve prediction accuracy and increase the size of the reference population by enabling the utilisation of historical data that are missing environmental records.

摘要

基因组预测与作物生长模型的结合使得缺失环境变量的估计成为可能,从而提高了谷物产量的预测准确性。自二十多年前全基因组预测(WGP)发明以来,育种计划已经建立了广泛的参考群体,这些参考群体在不同的环境条件下进行种植。引入了将作物生长模型(CGM)与 WGP 集成的 CGM-WGP 模型,将 WGP 的应用扩展到了对未表型特征在未经测试的环境(包括未来气候)中的预测。然而,CGM 需要多个季节性环境记录,而不像 WGP 那样,这使得 CGM-WGP 在应用于缺乏关键环境输入的历史参考群体时准确性降低。在这里,我们研究了 CGM-WGP 近似缺失环境变量以提高预测准确性的能力。在 CGM-WGP 算法的每次迭代中,小麦 CGM 中的两个环境变量(初始土壤含水量(InitlSoilWCont)和初始硝酸盐分布)分别或共同从不同的正态分布中进行采样。我们的结果表明,单独采样 InitlSoilWCont 效果最好,将谷物数量的预测准确性提高了 0.07,产量提高了 0.06,蛋白质含量提高了 0.03。当使用采样的 InitlSoilWCont 值作为传统 CGM 的输入时,基因型特定参数(GSP)的平均狭义遗传力提高了 0.05,GNSlope、PreAnthRes 和 VernSen 表现出最大的改进。此外,当使用采样的 InitlSoilWCont 值时,CGM 和 CGM-WGP 的谷物数量和产量的均方根误差分别降低了约 7%和 31%。我们的结果表明,在 CGM-WGP 中采样缺失环境变量可以提高预测准确性,并通过利用缺少环境记录的历史数据来增加参考群体的规模,从而具有优势。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验