Suppr超能文献

通过电子平板电脑捕捉到的眼球运动功能可反映帕金森病患者的认知功能和疾病严重程度。

Eye movement function captured via an electronic tablet informs on cognition and disease severity in Parkinson's disease.

机构信息

Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada.

Innodem Neurosciences, Montreal, QC, Canada.

出版信息

Sci Rep. 2024 Apr 20;14(1):9082. doi: 10.1038/s41598-024-59750-9.

Abstract

Studying the oculomotor system provides a unique window to assess brain health and function in various clinical populations. Although the use of detailed oculomotor parameters in clinical research has been limited due to the scalability of the required equipment, the development of novel tablet-based technologies has created opportunities for fast, easy, cost-effective, and reliable eye tracking. Oculomotor measures captured via a mobile tablet-based technology have previously been shown to reliably discriminate between Parkinson's Disease (PD) patients and healthy controls. Here we further investigate the use of oculomotor measures from tablet-based eye-tracking to inform on various cognitive abilities and disease severity in PD patients. When combined using partial least square regression, the extracted oculomotor parameters can explain up to 71% of the variance in cognitive test scores (e.g. Trail Making Test). Moreover, using a receiver operating characteristics (ROC) analysis we show that eye-tracking parameters can be used in a support vector classifier to discriminate between individuals with mild PD from those with moderate PD (based on UPDRS cut-off scores) with an accuracy of 90%. Taken together, our findings highlight the potential usefulness of mobile tablet-based technology to rapidly scale eye-tracking use and usefulness in both research and clinical settings by informing on disease stage and cognitive outcomes.

摘要

研究眼球运动系统为评估各种临床人群的大脑健康和功能提供了一个独特的窗口。虽然由于所需设备的可扩展性,详细的眼球运动参数在临床研究中的应用受到限制,但新型基于平板电脑的技术的发展为快速、简便、经济高效和可靠的眼动追踪创造了机会。通过移动基于平板电脑的技术捕获的眼球运动测量值以前已经被证明可以可靠地区分帕金森病 (PD) 患者和健康对照者。在这里,我们进一步研究了基于平板电脑的眼动追踪的眼球运动测量值在告知 PD 患者各种认知能力和疾病严重程度方面的用途。当使用偏最小二乘回归进行组合时,提取的眼球运动参数可以解释认知测试分数(例如,连线测试)高达 71%的方差。此外,通过接受者操作特征 (ROC) 分析,我们表明眼动追踪参数可用于支持向量分类器,以区分轻度 PD 个体和中度 PD 个体(基于 UPDRS 截止分数),准确率为 90%。综上所述,我们的研究结果强调了移动基于平板电脑的技术在研究和临床环境中快速扩展眼动追踪使用和实用性的潜力,通过告知疾病阶段和认知结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/291c/11032372/d09eedb63f0a/41598_2024_59750_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验