Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA.
Department of Business Analytics and Information Systems, Auburn University, Auburn, AL, USA.
Biomol Biomed. 2024 Sep 6;24(5):1387-1399. doi: 10.17305/bb.2024.10447.
Diagnostic delay leads to poor outcomes in infections, and it occurs more often when the causative agent is unusual. Delays are attributable to failing to consider such diagnoses in a timely fashion. Using routinely collected electronic health record (EHR) data, we built a preliminary multivariable diagnostic model for early identification of unusual fungal infections and tuberculosis in hospitalized patients. We conducted a two-gate case-control study. Cases encompassed adult patients admitted to 19 Mayo Clinic enterprise hospitals between January 2010 and March 2023 diagnosed with blastomycosis, cryptococcosis, histoplasmosis, mucormycosis, pneumocystosis, or tuberculosis. Control groups were drawn from all admitted patients (random controls) and those with community-acquired infections (ID-controls). Development and validation datasets were created using randomization for dividing cases and controls (7:3), with a secondary validation using ID-controls. A logistic regression model was constructed using baseline and laboratory variables, with the unusual infections of interest outcome. The derivation dataset comprised 1043 cases and 7000 random controls, while the 451 cases were compared to 3000 random controls and 1990 ID-controls for validation. Within the derivation dataset, the model achieved an area under the curve (AUC) of 0.88 (95% confidence interval [CI]: 0.87-0.89) with a good calibration accuracy (Hosmer-Lemeshow P = 0.623). Comparable performance was observed in the primary (AUC = 0.88; 95% CI: 0.86-0.9) and secondary validation datasets (AUC = 0.84; 95% CI: 0.82-0.86). In this multicenter study, an EHR-based preliminary diagnostic model accurately identified five unusual fungal infections and tuberculosis in hospitalized patients. With further validation, this model could help decrease time to diagnosis.
诊断延迟导致感染的预后不良,而当病原体不常见时,这种情况更常发生。延迟归因于未能及时考虑这些诊断。我们使用常规收集的电子健康记录 (EHR) 数据,为住院患者中早期识别不常见的真菌感染和结核病构建了一个初步的多变量诊断模型。我们进行了一项双门病例对照研究。病例包括 2010 年 1 月至 2023 年 3 月期间在梅奥诊所企业医院住院诊断为芽生菌病、隐球菌病、组织胞浆菌病、毛霉菌病、卡氏肺孢子虫病或结核病的成年患者。对照组来自所有住院患者(随机对照)和社区获得性感染患者(ID 对照)。使用随机化将病例和对照(7:3)进行分组,构建了开发和验证数据集,使用 ID 对照进行了二次验证。使用逻辑回归模型构建了一个基于基线和实验室变量的模型,结果为感兴趣的不常见感染。推导数据集包含 1043 例病例和 7000 例随机对照,而 451 例病例与 3000 例随机对照和 1990 例 ID 对照进行验证。在推导数据集中,该模型的曲线下面积 (AUC) 为 0.88(95%置信区间 [CI]:0.87-0.89),校准准确性较好(Hosmer-Lemeshow P = 0.623)。在主要(AUC = 0.88;95% CI:0.86-0.9)和次要验证数据集(AUC = 0.84;95% CI:0.82-0.86)中观察到类似的性能。在这项多中心研究中,基于 EHR 的初步诊断模型准确识别了住院患者中的五种不常见真菌感染和结核病。经过进一步验证,该模型有助于缩短诊断时间。